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Abstract. Fire is a major force driving the evolution of plants and the structure and
function of ecosystems globally. It thus likely operates as an important environmental filter
that selects for species that have evolved to tolerate and depend on fire. Across a 40-year
experimental fire gradient from frequently burned open savanna to unburned dense woodland
in Minnesota, USA, we examined the relationships among community assembly, evolutionary
history, and functional trait composition. Close relatives had similar abundance patterns
across the fire gradient, providing evidence for phylogenetic conservatism in fire adaptation
and highlighting the importance of shared ancestry in predicting species responses to fire.

Phylogenetic beta diversity was greatest between the most extreme fire treatments across
the gradient, indicating that species in the most contrasting fire regimes were most distantly
related. Fire strongly influenced diversity, co-occurrence patterns, and leaf trait means and
variances within communities. The most frequently burned communities had the highest
species richness, exhibited the most resource-conservative leaf traits, and spanned the greatest
number of phylogenetic lineages but harbored more close relatives within those lineages than
other communities. In contrast, unburned communities had the lowest species diversity, the
most acquisitive leaf traits, and the fewest phylogenetic lineages, but close relatives co-
occurred less frequently. The largest difference in abundance between treatments occurred
within the Rosales, Asteraceae, Vitaceae, and the Poaceae; woody Rosales were strongly
selected for in unburned communities, while composites and grasses of the Poaceae were
strongly selected for under frequent burning.

A major climatic perturbation of consecutive hot, dry summers in the late 1980s prompted
a significant shift in the functional and phylogenetic composition of communities. Greater
than expected turnover in species composition occurred following the drought years, and then
again during the subsequent five-year rebound period. Just after the drought year, turnover
was greatest among recently diverged taxa, whereas during the rebound period turnover was
greater among taxa that diverged deep in the phylogeny. The drought years also caused a
short-term shift in functional traits, including declines in specific leaf area and leaf nitrogen
content and an increase in leaf length. These results indicate that the phylogenetic and
functional trait composition of communities are responsive both to fire gradients and to
shocks to the system, such as climatic perturbation.

Key words: Cedar Creek Ecosystem Science Reserve; climatic perturbation; community-weighted
means; depth of turnover; fire frequency; functional traits; oak savanna; phylogenetic niche conservatism;
phylogeny.

INTRODUCTION

Fire is a major force in the evolution of fire-tolerant

and fire-dependent plant species (Keeley 1991, Schwilk

and Ackerly 2001, Bond and Keeley 2005) and is a

critical driver of ecosystem structure and function

globally (Whelan 1995, Pyne et al. 1996, Thonicke et

al. 2001, Bond et al. 2005). The frequency and dynamics

of fire have important consequences for community

assembly (Verdu and Pausas 2007, Peterson and Reich
2008, Silva and Batalha 2010), functional trait compo-
sition (Ackerly et al. 2002, Hoffmann et al. 2003, 2005,
Silva and Batalha 2009, Willis et al. 2010), and
ecosystem function, including productivity and nutrient
cycling (Myers 1985, Reich et al. 2001a, b). In North
America, oak savanna is a fire-dependent and endan-
gered ecosystem that once covered nearly one-third of
the continental United States (Packard and Mutel 1997).
Due to the expansion of agriculture, major shifts in land
use and changes in land management practices with
Euro-American settlement (including fire suppression),
the oak savanna has been reduced to a tiny fraction of
its original area. Oak savannas represent a major
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ecotone between forest and grassland biomes and have
long been studied to investigate issues such as stability,
the role of disturbance, and controls on community
composition and ecosystem function. Intermediate-
frequency fire regimes are commonly found to be
important in maintaining savannas (Gleason 1913,
Glitzenstein et al. 1995, Peterson and Reich 2001,
Varner et al. 2005, Hoffmann et al. 2009). Reductions
in fire frequency caused both by land use change and fire
suppression have been implicated in loss of savanna
ecosystems and succession toward closed-canopy and
fire-intolerant species (Dickman 1978, Wright and
Bailey 1982, McPherson 1997, Anderson et al. 1999).
Fire is likely to interact with other abiotic factors,
including climate, to impose environmental filters on the
establishment and population dynamics of species (Danz
et al. 2011). These environmental filters may be expected
to have consequences for the phylogenetic and func-
tional composition of communities (Cavender-Bares et
al. 2004a, b, Verdu and Pausas 2007). If fire adaptations
are conserved through evolutionary history, closely
related species may sort similarly across fire frequency
gradients.
The objective of this paper was to investigate the role

of fire dynamics and climatic perturbation through time
on shifts in the phylogenetic and functional composition
of communities across the grassland–forest ecotone. The
study is conducted in the context of a large-scale 40-year

fire frequency experiment designed to test the role of fire
in restoring the Midwestern oak savanna (see Plate 1).
This time frame spans a range of climatic variability.
Climate was mildly variable from the 1980s to the
present, but extreme high temperatures occurred over
three consecutive growing seasons in the late 1980s,
accompanied by severe drought. This is known to have
had major effects on regional ecosystems (Haddad et al.
2002, Dovciak et al. 2005).

Previous studies in this woodland system have found
shifts in composition, including an increase in basal
density of woody species and canopy closure with
decreasing fire frequency (Peterson and Reich 2001).
Contrasting fire frequency also influences light avail-
ability and light heterogeneity within stands, leading to
divergent patterns of community phylogenetic structure
(Willis et al. 2010). At the ecosystem level, decreasing
fire frequency accelerates N mineralization and N
cycling driven by increased detrital production, im-
proved detrital quality, and increased moisture, caused
by a roughly 50–50 mixture of direct impacts and those
flowing from changes in vegetation composition (Reich
et al. 2001b, Dijkstra et al. 2006).

Information about the shared ancestry of organisms,
often associated with functional similarity of species, has
proven to be illuminating about biodiversity in ways
that go beyond simply counting numbers of species (e.g.,
Faith 1994, Webb 2000, Cavender-Bares et al. 2004a,

PLATE 1. Spring burning in a 40-year fire frequency experiment in the oak savanna at Cedar Creek Ecosystem Science Reserve
(Minnesota, USA). Photo credit: John Haarstad.
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Cadotte et al. 2008). Individual traits are likely to vary
in the extent to which they are phylogenetically
conserved (Ackerly and Reich 1999), and trait lability
may vary with phylogenetic scale (Cavender-Bares et al.
2006, 2009). At some phylogenetic scale, however,
phenotypic and functional traits, including those that
relate to ecological niches, generally show greater
similarity among species with greater shared ancestry
(Harvey and Pagel 1991, Blomberg and Garland 2002,
Wiens and Graham 2005, Donoghue 2008, Wiens et al.
2010).
Given that species with shared functional attributes

and shared ancestry may have similar responses to the
environment, environmental filters are predicted to have
consequences for both the functional (Weiher and
Keddy 1999, Weiher et al. 1999) and phylogenetic
structure of communities (Webb et al. 2002, Cavender-
Bares and Wilczek 2003). Some efforts to detect
consequences of environmental filtering on community
structure have detected strong functional effects inde-
pendent of species evolutionary history (e.g., Silva and
Batalha 2010, Milla and Reich 2011). However, in many
cases, both are detected, with functional consequences
helping to illuminate mechanisms by which phylogenetic
community structure is influenced (Cavender-Bares et al.
2004a, Kraft and Ackerly 2010, Willis et al. 2010, Knapp
et al. 2012, Savage and Cavender-Bares 2012). Fre-
quently, information on functional traits may be limited
or lacking, particularly for species rich communities
(e.g., Webb 2000, Strauss et al. 2006, Cadotte et al. 2010,
Davies et al. 2010), or the functional traits critical for
community assembly may be unknown. Phylogenetic
information thus offers integrative information on
shared ancestry and potentially on species functional
similarity that can provide insights on the drivers of
community structure and responses of communities to
environmental change (Webb et al. 2002, Kraft et al.
2007, Cavender-Bares et al. 2009, Vamosi et al. 2009).
In this study, we investigated the evidence for

phylogenetic conservatism in fire frequency niches by
examining whether species that have descended from a
recent common ancestor sort similarly across a 40-year
fire frequency gradient. If species with high shared
ancestry are similarly selected for by a given fire regime,
and if species adapted to contrasting environments are
drawn from different lineages across the phylogeny, then
increasing differences in fire regime between communi-
ties should increase phylogenetic beta diversity, or
phylogenetic dissimilarity between communities (sensu
Bryant et al. 2008, Graham and Fine 2008, Sander and
Wardell-Johnson 2011). We thus predicted turnover
across the extremes of the gradient to occur between
lineages that diverged deep in time, but turnover among
communities within similar environments to occur
among close relatives that share similar adaptations.
We also examined the extent to which shocks to the
system, such as major climatic perturbations, cause
temporal turnover in phylogenetic and functional

composition beyond that expected at random. Finally,
we examined the extent to which both fire regime and
climatic perturbation drive shifts in functional and
phylogenetic components of diversity.
By investigating the dynamics of communities

through time under long-term experimentally manipu-
lated disturbance regimes, we seek to address long-
standing questions on the controls of diversity and
composition of the prairie–oak savanna–woodland
mosaic and to provide critical knowledge relevant to
the management of biodiversity and ecosystem services
of a once prominent ecosystem. In doing so, we address
critical questions about the phylogenetic conservatism of
ecological niches (Donoghue 2008, Wiens et al. 2010)
and the importance of evolutionary history in driving
species responses to environmental change (Edwards et
al. 2007, Willis et al. 2008).

METHODS

Site and study system

The study was located at the Cedar Creek Ecosystem
Science Reserve (hereafter Cedar Creek), a 2300-ha
reserve and National Science Foundation (NSF) Long
Term Ecological Research site on the Anoka Sand Plain
in eastern Minnesota, USA (see Plate 1). The terrain is
relatively flat, and soils are infertile, excessively drained,
fine-to-medium sands. The climate is humid continental,
with warm summers and cold winters. Mean annual
precipitation is 79 cm, with 64% of this total occurring
during the active growing season (May–September;
Reich et al. 2001b). Episodes of prolonged drought
occurred in the late 1980s and the mid-1990s. The most
striking climate period from 1982 to 2011 was 1986–
1988. This period included the three hottest summers
during the period, one of the three driest summers, and
both the hottest and driest two-month and one-month
periods. Moreover, the hottest and driest two-month
periods were coincident (June–July 1988) and the single
driest month (the fifth hottest of the 112 in the record)
was followed by the single hottest month. Of over 4000
days in this record, 11 of the 25 hottest were in 1988.
Marked impacts of this 1986–1988 hot dry period on the
dynamics of Anoka sand plain vegetation have been
documented previously (Haddad et al. 2002, Dovciak et
al. 2005).
A prescribed burning experiment was initiated at

Cedar Creek in 1964 to characterize responses to varying
fire frequency and to restore and maintain oak savanna
vegetation (Peterson and Reich 2001). An area of 300 ha
was divided into 19 management units of 2.4 to 30 ha,
and each was assigned a burn frequency treatment,
ranging from nearly annual burns to complete fire
exclusion, creating a gradient from open savanna to
closed forest. Prescribed burns were conducted in April
or May, after the snow melted but before leaf out.
Typical burning conditions included air temperatures of
158C to 258C, relative humidity of 25% to 45%, and
winds of 20 km/h. Fire behavior varied with weather
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conditions and fuel loads, but fires were generally of low
intensity, with mean flame lengths of 1 m (Reich et al.
2001b). We characterized the burn units and the 375-m2

sample plots within them into five categories: the
unburned control (‘‘Fire 0’’); low frequency (approxi-
mately once per decade; ‘‘Fire 1’’); medium frequency
(2–33 per decade; ‘‘Fire 2’’); mid-high frequency (4–53
per decade; ‘‘Fire 3’’); and high frequency (7–83 per
decade; ‘‘Fire 4’’).
Land use history across the burn units was relatively

homogeneous; by the mid-20th century, most were
dominated by semi-native woodland that had never
been plowed, but had likely been periodically grazed and
experienced limited selective logging (largely for fire-
wood). Baseline vegetation data were not collected prior
to the start of the prescribed fire program in 1964. There
are no reliable fire records prior to this time period, but
fire exclusion was an important management objective in
the prior decades and was apparently achieved. Prior to
1938, these stands likely burned periodically. Aerial
photos taken between 1938 and 1964 show increasing
total canopy cover resulting from expansion of tree
crowns and new tree growth (Reich et al. 2001b).

Community sampling

Permanent 0.375-ha plots (50 3 75 m) were estab-
lished in the savanna burn units, each consisting of four
parallel 50-m sampling transects placed 25 m apart.
Eleven plots were established in 1984, three more were
added in 1990, and 11 additional plots were added in
1995. Understory communities were surveyed every five
years since the mid-1980s. In each plot, percent cover of
all vascular plant species was assessed at sample points
placed at 10-m intervals along each transect (a total of
24 sample points per plot). These cover values represent
abundance in terms of both density and biomass. Cover
values were summed across sample points by species
within plots to estimate total abundance in each 375-m2

community. To assure uniform taxonomic identities
across years, given changing investigators over time, in a
small number of cases, we used generic identification for
genera that showed unlikely species level shifts between
years. Ferns were excluded from all analyses due to the
long-branch problem (Kembel and Hubbell 2006) that
made communities with ferns extreme outliers in terms
of community phylogenetic composition. There was one
conifer in the study system, Juniperus virginiana.
Exclusion of this species had no significant consequences
for any of the results, and it was included.

Phylogeny construction

We used three literature-based phylogenies resolved
manually with branch lengths estimated using minimum
fossil ages (Supplement 1). The first phylogeny, referred
hereafter as the CCphy tree (shown graphically in
Appendix C) was assembled using the Angiosperm
Phylogeny Group III tree (R20091110) as a backbone
phylogeny and resolving the family and generic rela-

tionships manually (Supplement 2 and Appendix B).
Nodes were dated based on minimum fossil ages and
divergence-time estimates available in the literature
(Supplement 2, including: Manos et al. 1999, Wikstrom
et al. 2001, Chaw et al. 2004, Anderson et al. 2005, Bell
et al. 2010, Bouchenak-Khelladi et al. 2010), using the
BLADJ algorithm in Phylocom (Webb and Donoghue
2005). The second was assembled collectively by
members of the Ecophylogenetic Working Group,
hereafter referred to as the EcoPhyWG tree, and the
methods are explained in Beaulieau et al. (2012this
issue). Sources and nodes were annotated using the
program Phylografter (Ree 2009). The ;14 000 species
phylogeny was pruned for the 237 taxa represented in
the Cedar Creek fire frequency data set. The third tree,
previously reported in Willis et al. (2010), was con-
structed based on the Davies et al. (2004) backbone tree
using Phylomatic (Webb and Donoghue 2005). Higher
taxa were resolved based on available literature, and
minimum fossil ages were used to date nodes. The
CCphy tree is more resolved than the EcoPhyWG tree
and slightly updated from the Willis et al. (2010) tree. It
is used for all of the analyses presented.

Species functional traits

A suite of functional traits, including leaf morpho-
metric traits, leaf N concentration, and plant height,
were used to provide univariate and multivariate
measures of functional diversity at the community level
and to estimate abundance-weighted community means
across treatments and through time. Green leaf areas
and masses, and N concentrations (using standard
methods), were measured in mid-summer for several
individuals of all species representing .1% of cover on
8–11 subplots in each of 12 plots. Upper canopy foliage
was sampled from each individual and the percentage of
canopy openness of each subplot was measured (Reich
et al. 2001a). Maximum plant height was determined
from both field collections and available literature. Leaf
morphology and plant height were previously reported
in Willis et al. 2010; N concentrations are from P. Reich
(unpublished data). The trait matrices are incomplete due
to rarity of some species. Leaf morphological traits were
available for 107 species; plant height for 86 species, and
leaf nitrogen for 95 species. Species trait data represent
.;80% biomass in the plots.

Data analysis

Community diversity.—We used several metrics of
community diversity, including species richness (number
of species per community), phylogenetic species variance
(PSV; a measure of phylogenetic diversity independent
of species richness; Helmus 2007), mean phylogenetic
distance weighted by abundance (MPD; Webb 2000),
and mean nearest phylogenetic taxon distance weighted
by abundance (MNTD; Webb 2000). PSV, MPD, and
MNTD were calculated using the Picante package in R
(Kembel et al. 2010). While many metrics are available,
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these were chosen to capture a range of aspects of
biodiversity. PSV ranges from zero to one, where a PSV
of one indicates that species in a community are from
disparate parts of the tree, and values of zero indicate
perfect relatedness (or perfect trait similarity). Similarly,
MPD provides a measure of mean phylogenetic diversity
by taking the mean phylogenetic distance between
individuals normalized by those distances when species
identities are randomized across the tips of the
phylogeny. MNTD is similar to MPD, but uses
phylogenetic distances between closest relatives, empha-
sizing evolutionary relatedness encompassing the branch
tips of the phylogenetic tree (Webb 2000). Diversity of
functional traits was calculated using PSV based on
hierarchical clustering of univariate or multivariate
traits (Petchey and Gaston 2002) as implemented by
Cadotte et al. (2009). Univariate traits were maximum
plant height and leaf nitrogen concentration. The
multivariate trait was the first principal component axis
loadings of a principal components analysis that
included leaf area, leaf length, specific leaf area, and
leaf area per perimeter, each standardized to a mean of 0
and variance of 1. All diversity indices were compared to
null models in which species abundances were random-
ized across communities, constraining species total
biomass, but not the number of species per community.
Standardized effect sizes (SES) were calculated as

SES ¼ ð!xobs # !xnullÞ=SDnull

where xobs is the observed mean diversity, xnull is the
mean of the simulated values, and SDnull is the standard
deviation of the simulated values.
Phylogenetic beta diversity.—While there are multiple

approaches for calculating phylogenetic beta diversity
or phylogenetic dissimilarity between communities
(e.g., Bryant et al. 2008, Morlon et al. 2011, Sander
and Wardell-Johnson 2011, Swenson et al. 2012), we
used the comdistn function in Picante (Kembel et al.
2010), in which a pairwise community distance matrix
was computed based on the mean nearest taxon
distance between species pairs across plots, weighted
by species abundance. This provides a matrix of
intercommunity phylogenetic beta diversity values.
From this matrix, we used Primer version 5 (Clarke
and Warwick 1994, PRIMER-E 2001) to compute a
nonmetric multidimensional scaling (NMDS) ordina-
tion and to conduct a nonparametric analysis of
similarity (ANOSIM) to test for differences between
fire treatments, averaged across years. The ANOSIM
tests whether the phylogenetic beta diversity (or
phylogenetic dissimilarity) between treatments or years
is greater than expected at random.
Phylogenetic depth of species turnover.—In a related

approach, we examined the species turnover at
sequential depths in the phylogeny. This allows
identification of the historical time interval in which
changes in turnover between treatments (or years) is
greatest. In combination with mapping abundances, it

reveals the lineages most important in turnover
between community groups. Bray-Curtis dissimilarity
between communities was calculated using the Vegan
Community Ecology package in R (Oksanen et al.
2011), collapsing taxa at 20-million-year intervals
through the phylogeny, adapting the approach used
in Cavender-Bares et al. 2004a. At each successive
phylogenetic depth, the tree was trimmed to include
only the ancestral taxa at that depth, and abundance
was summed for all collapsed taxa at each interval.
Thus, the number of taxa was reduced at each slice
through the phylogeny. To account for this change in
numbers of taxa, a null model was generated in which
species distributions were randomized across commu-
nities constraining total biomass per species. These
methods are explained and illustrated further in
Appendix A.
Bray-Curtis dissimilarity was computed between the

unburned control and the four fire treatments by
averaging biomass values of species across all survey
years in each treatment. Dissimilarities between treat-
ments greater than the null for a given phylogenetic
depth indicate greater turnover in species composition
between unburned and burned communities than
expected if species distributions were random. Dissim-
ilarity between consecutive census years was computed
by averaging biomass values per species across all fire
treatments. The null model randomized species biomass
values across communities and years for the two
comparison years, constraining total biomass per
species. Communities in the analyses were constrained
to those common to both years. Dissimilarities between
years greater than the null indicate greater changes in
community composition for a given phylogenetic depth
than expected at random. Dissimilarities less than the
null indicate greater continuity in species composition
between sample years than expected.
Test for phylogenetic conservatism.—We tested for

phylogenetic signal in functional traits and in species
responses to fire and drought by examining variation
in species mean trait values or species relative
abundances using the K statistic (Blomberg et al.
2003) using the Kcalc function (written by S. Blomberg
and D. Ackerly) implemented in Picante. K relates the
observed variance among traits to that expected
among traits of species descended from a common
ancestor. K values of 1 are equivalent to trait evolution
expected under a Brownian motion model evolution. K
values of 0 have no phylogenetic signal. We tested
whether observed K values were significantly different
than expected at random by comparing them to a null
model in which species identities were randomized 999
times across the tips of the phylogeny (null model 1).
We also compared whether observed values were
significantly different than 1 by generating a Brownian
motion null model in which traits were evolved on the
phylogeny (using the rTraitCont function in APE
[Paradis et al. 2004]) 999 times with a rate of evolution
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calculated from the data (using the fitContinuous
function in Geiger [Harmon et al. 2008]; null model 2).
We assume that a K value significantly greater than
that expected at random (null model 1) provides
evidence for phylogenetic conservatism in traits or in
species response to environmental factors. A K value
not significantly different from 1 (null model 2) would
indicate that patterns of trait evolution show phylo-
genetic signal consistent with Brownian motion evo-
lution, a higher level of conservatism (Losos et al.
2008).
To test for phylogenetic conservatism in species

responses to fire frequency, we calculated K for species’
relative abundance, averaged across all years, in each
of the fire treatments. Total species abundances in the
Cedar Creek oak savanna system might themselves
have phylogenetic signal, and this must be tested to
determine whether phylogenetic signal across the fire
gradient can be linked to a nonrandom sorting process.
A significant K for abundances within treatments and
nonsignificant K in total abundances across all
treatments can be interpreted as evidence that species
abundance patterns are nonrandom and that evolu-
tionary history influences how species sort across the
gradient. We also tested whether there was an increase
in phylogenetic signal in species abundances following
the severe drought years of the late 1980s to evaluate
whether species with shared ancestry respond similarly
to climatic perturbation.
Community-weighted means for functional traits.—

Species mean functional traits values were used to
calculate community trait means, weighted by abun-
dance (CWM) as follows:

CWM ¼
Xn

i

TiPi

where Ti is the species mean trait value for species i and
Pi is the proportional abundance of species i in the
community (Garnier et al. 2004). These community-
weighted means incorporate only a single mean trait
value per species, and therefore do not consider
intraspecific variation in traits across the fire frequency
gradient. Changes in values among treatments and over
time thus reflect changes in species composition and
abundance, but not plastic or genetically based intra-
specific variation that might be expected across envi-
ronments. Standardized effect sizes for trait values
across the treatments calculated relative to a null model
where species distributions were randomized across
communities showed nearly identical patterns to the
observed values and are not shown.

RESULTS

Overall, we found that closely related species sort
more similarly across the fire frequency gradient than
expected at random and showed greatest phylogenetic
beta diversity at extremes of the gradient; species

turnover occurred particularly between lineages that
diverged deep in the phylogeny (80–140 million years
ago [mya]; Fig. 1). Phylogenetic community structure
and community-weighted functional trait means differed
between fire treatments and shifted in response to
climatic perturbation. Temporal phylogenetic beta
diversity, or turnover through time, also spiked and
then recovered in response to the drought.

Community diversity and composition

Mean species richness per 375-m2 plot was signifi-
cantly lower in the unburned treatment than in any of
the burn treatments (Figs. 1A and 2A), and was below
the 95% CI for the null expectation based on random
species distributions (not shown). Species richness was
relatively stable through time, varying from a mean of
33–39 species/plot in the unburned treatment and 42–
60 species/plot in the burn treatments. Phylogenetic
species variance (PSV), which is independent of species
richness, was also lowest in the unburned plots (as was
MPD; Appendix B) and below the 95% CI for the null
expectation. Mean PSV per plot was relatively stable
through time, except in the unburned treatment, where
it decreased somewhat after 1995 (Fig. 2B). Abun-
dance-weighted MPD followed a similar trend as PSV,
with lowest values in the unburned plot (Appendix B).
In contrast, the abundance-weighted mean nearest
taxon distance (MNTD) per plot was higher in the
unburned treatment than in any of the burn treatments
and was lowest in the highest frequency burn treatment
in most years (Fig. 2C). Moreover, MNTD showed a
marked dip in 1990 in the unburned treatment,
followed by a subsequent increase. Variance in MNTD
within treatments was also lowest in 1990. Patterns of
phylogenetic community structure were similar using
the alternative phylogenies and are compared in
Appendix E.

Community diversity calculated based on functional
traits showed complicated patterns through time, and
treatments were not always clearly differentiated (Ap-
pendix B). The multivariate measure of leaf trait
diversity was lowest in the two highest frequency burn
treatments, except in 1990, when the highest frequency
burn treatment showed the greatest variation in leaf
functional diversity (Fig. 2D). This pattern was repeated
for diversity in leaf nitrogen concentration (Appendix
B). Diversity in maximum plant height tended to be
lowest in the unburned treatment and in the highest
frequency fire treatment, with higher height diversity in
the intermediate fire treatments (Appendix B). Stan-
dardized effect sizes for diversity metrics calculated
relative to a null model where species distributions were
randomized across communities showed nearly identical
patterns to the observed values (Appendix B). Using
abundance-weighted measures vs. species occupancy
values had only a marginal influence in interpreting
the effects of fire. However, the shifts in diversity and
composition in 1990 after the severe drought were much
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FIG. 1. (A) Relative abundance of species in the oak savanna across the experimental fire frequency gradient from 1984 to 2010
arranged on the CCphy phylogeny. The y-axis shows the years of the study for each treatment. Colors show fire frequency
treatments: blue, unburned control (Fire 0); purple, low frequency, burned every 10 or 11 years (Fire 1); green, intermediate
frequency, burned every 6 or 7 years (Fire 2); orange, intermediate high frequency, burned every 3 or 4 years (Fire 3); red, highest
frequency, burned every 1 or 2 years (Fire 4). Circle sizes are proportional to relative abundance. Nodes corresponding to several
important clades are labeled. The red line is drawn through the phylogeny at a depth of 80 million years ago (mya), corresponding to
the phylogenetic depth where the change in turnover between treatments is greatest, as seen in Fig. 4B. Only angiosperms are shown,
given few species and low abundances of other taxa. The complete phylogeny with species names can be viewed in Appendix B.
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stronger using abundance-weighted measures. These
results indicate that much of the impact of climatic
perturbation was on population size rather than species-
level persistence.

Functional trait composition in response to fire
and drought

Functional trait composition responded to fire
frequency in a manner consistent with expectation
based on previous work considering the functional
attributes known to be selected for under fire
suppression or frequent fire (Reich et al. 2001b,
Hoffmann et al. 2004, 2005, Silva and Batalha 2010,
Willis et al. 2010). Species maximum plant height was
highest in the unburned plots and lowest in the most
frequently burned plots (Fig. 2E). This shift corre-
sponds to the expected increasing dominance of
woodland species in the unburned communities and
increasing dominance of grasses, herbs, and shrubs in
the burned savanna communities. Leaf length was
shortest in the unburned plots relative to mean values
in all of the fire treatments (Fig. 2F). The shorter leaf
size accompanied the reduction in grasses with canopy
closure in the woodland communities, consistent with
other studies of fire frequency and community struc-
ture (e.g., Hoffmann et al. 2005, Silva and Batalha
2010).

Specific leaf area (SLA) and the percentage of leaf
nitrogen (leaf %N) were highest in the unburned
communities and tended to be lowest in the highest
frequency burn treatment. Higher specific leaf area and
leaf nitrogen content with increasing fire correspond to
greater canopy closure and shading in the woodland
understory relative to the savanna, as well as accumu-
lating impacts over time of greater N cycling in closed
woodland than open savanna plots (Reich et al. 2001b).
These trends indicate a shift toward species that invest in
light and carbon harvesting in the unburned woodland
and in photoprotection, desiccation tolerance, and N
competition strategies in the fire-promoted open savan-
na. Such functional traits shifts would be expected
across this fine-scaled ecotone, based on known
significance of these functional attributes (e.g., Niine-
mets 2001, Wright et al. 2001, Reich et al. 2003a, b,
Poorter et al. 2006, Valladares and Sanchez-Gomez
2006).

Compared with 1984, SLA and leaf %N declined
markedly in 1990 (following the severe drought years)
in most fire treatments, and leaf length as well as
perimeter per leaf area (not shown) increased markedly
(Fig. 2F–H). Maximum height also declined sharply in
the low-frequency fire treatment. These dynamic
changes result from abundance losses in species with
high water use strategies and abundance increases in
species with drought tolerance attributes during a
relatively short time window follow the multiyear
climatic perturbation. These trait shifts were transient

FIG. 1. Continued.

 
(B) The same phylogeny is shown sliced at 80 mya. Relative
abundances are shown for each clade at this phylogenetic depth.
For brevity, only the unburned treatment and the most
frequently burned treatment are shown. Fire treatments are
color-coded as in panel (A). Clade abbreviations are as follows:
Campan, Campanulids; Po, Poaceae; Cyp, Cyperaceae; Asp,
Asparagaceae; and Fagal, Fagales.
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FIG. 2. (A–D) Metrics of diversity for oak savanna understory communities at Cedar Creek Ecosystem Science Reserve,
Minnesota, USA, averaged for unburned communities and in communities treated with increasing fire frequency from 1984 to
2010: (A) species richness (number of species per 375-m2 sample plot averaged across all plots in each treatment); (B) phylogenetic
species variability (PSV), a measure of mean phylogenetic diversity that ranges from 0 (low phylogenetic diversity) to 1 (high
phylogenetic diversity); (C) mean nearest taxon diversity (MNTD) a measure of species relatedness to their closest relatives; and
(D) functional diversity for a multivariate measure of leaf traits using PSV calculated for hierarchical clustering of specific leaf area,
leaf perimeter per area, leaf length, and leaf area. Functional diversity for plant height, multivariate leaf traits, and leaf nitrogen
concentration, along with their effect sizes, calculated relative to a null model, are shown in Appendix B. Mean phylogenetic
distance is also given in Appendix B for comparison. (E–H) Community-weighted means from 1984 to 2010 in each fire frequency
treatment for four plant traits: (E) maximum plant height, (F) leaf length, (G) specific leaf area (SLA), and (H) the percentage of
leaf nitrogen (leaf %N). Community-weighted means are calculated from species mean values for the trait multiplied by the
proportional abundance of each species in the community. In all panels, values are calculated per plot and averaged across all plots
in each treatment. See Fig. 1 for fire frequency treatment definitions. Error bars are 6SE.
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though, as values returned to near-1984 values from
1995 to 2010.

Phylogenetic beta diversity among treatments and years

The NMDS ordination of intercommunity phyloge-
netic distances between nearest taxa over all years, a
measure of the phylogenetic beta diversity, showed

differentiation among treatments. The most frequently
burned plots occurred in the bottom left quadrant, and
the most infrequently burned plots appeared predomi-
nantly in the right half of the plot (Fig. 3A). Fire-treated
communities were more tightly clustered in the ordina-
tion than the unburned plots, indicating greater
phylogenetic similarity among burned communities than

FIG. 3. (A) Nonmetric multidimensional scaling (NMDS) ordination based on pairwise, abundance-weighted, mean nearest-
taxon phylogenetic distances between communities in different fire treatments and over time. Color indicates fire frequency
treatment (see Fig. 1 for definitions), and the symbol shape indicates the year. (B) Values of the first axis of the NMDS ordination
averaged across all years and plotted against fire frequency treatments. Superimposed on these values are the phylogenetic beta
diversity values, calculated as the phylogenetic distances between nearest taxa in pairs of communities (375-m2 plots), for each
pairwise comparison between unburned communities and the fire treatments. The value plotted for ‘‘0’’ is the phylogenetic beta
diversity between communities within the unburned control. (C) Values of the first axis of the NMDS ordination averaged across
all fire treatments and plotted against survey years. Symbols are the same as in panel (A). Superimposed is the phylogenetic beta
diversity between 1984 and all other years, calculated as in panel (B). The value plotted for 1984 is the average phylogenetic beta
diversity between all pairs of communities for 1984. Error bars are 6SE.
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among unburned ones. The differentiation between
unburned and burned communities (and also, but less
so, among burned communities differing in fire frequen-
cy) is evident when the loadings from the first axis are
averaged across all years and plotted relative to fire
frequency category (Fig. 3B). These relative differences
in the first NMDS axis were highly similar to the mean
phylogenetic beta diversity among unburned plots and
between the unburned plots and each fire category (Fig.
3B). Differentiation across years also occurred (Fig.
3C), with a loading in 1990 of #0.47 6 0.15 (mean 6
SE) across all fire treatments, which is lower than all
other years (ranged from#0.025 6 0.21 in 1984 to 1.5 6
0.07 in 2005). Phylogenetic beta diversity means for all
plots within 1984 (the initial survey year) and between
1984 and all other years showed a similar pattern, with
the exception that the highest phylogenetic beta diversity
was between 1984 and 1995, after which time commu-
nities showed declining phylogenetic beta diversity
indicating greater phylogenetic similarity to the initial
survey year.
ANOSIM results for differences between fire treat-

ments averaged across years with 999 permutations of
the distance matrix, showed significant differentiation
between the unburned treatment and the most frequent-
ly burned treatment (Fire 0 vs. Fire 4, R ¼ 0.832, P ¼
0.001). All burn treatments were significantly different
than the unburned treatment (e.g., 0 vs. 3, R¼ 0.75, P¼
0.001; 0 vs. 2, R¼ 0.86, P¼ 0.001; 0 vs. 1, R¼ 0.52, P¼
0.001), but intermediate fire treatments were not
significantly differentiated (2 vs. 3, R ¼ #0.06, n.s.; 3
vs. 4, R¼#0.04, n.s.) or were significantly differentiated,
but had low R values (e.g., 1 vs. 2, R¼ 0.24, P¼ 0.004; 1
vs. 4, R¼ 0.286, P¼ 0.002; 2 vs. 4, R¼ 0.31, P¼ 0.001).
R and P values largely corresponded to the magnitude of
difference between fire frequency categories so that the
unburned plots and the most frequently burned plots
were the most differentiated, while the intermediate
frequency treatments were the least differentiated. For
comparisons across years for the full data set, ANOSIM
showed significant differentiation between 1990 and all
other years (Appendix D).

Phylogenetic depth of species turnover between fire
treatments and over time

Turnover in species composition between unburned
communities and all fire treated communities (averaged
across years using Bray-Curtis dissimilarity at different
phylogenetic depths) was large (dissimilarity high) and
resulted from contrasting fire frequency niches among
lineages that diverged deep in the phylogeny (Fig.
4A, B). The greatest turnover occurred between the
unburned and most frequently burned plots, consistent
with the ANOSIM analysis from the phylogenetic
distance matrix. In this comparison (Fire 0 vs. Fire 4),
the dissimilarity declined sharply starting at 80 mya, as
seen most clearly from the standardized effect sizes (Fig.
4B), indicating that this is a critical depth for localizing

clade-level niche differences related to fire. Dissimiliarity
continued to decline to 140 mya. The largest drop in
dissimilarity occurred between 80 mya and 140 mya,
encompassing the origins of the monocots and eudicots.
At the 80-mya cutoff (Fig. 1B) the Rosales, Fagales,
Vitaceae, Asteraceae, and Poaceae are the clades that
contribute most prominently to turnover between
treatments. Turnover between fire treatments of differ-
ent frequency was substantial (but much less than
comparing burned and unburned vegetation), and
changes in dissimilarity through successive depths in
the phylogeny were flat or continuously declining,
indicating that turnover occurred across the phylogeny
among taxa that diverged recently as well as anciently.
Between consecutive sampling years, turnover was
greater than expected only between 1984 and 1990
among taxa at the tips of the phylogeny and between
1990 and 1995 among clades that diverged deep in the
phylogeny (Fig. 4C, D). In the other consecutive year
pairs, dissimilarity was lower than the null expectation
of random species distributions across years, indicating
continuity in community composition between years.

Phylogenetic conservatism in species sorting across the
fire frequency gradient

The K value for species abundances averaged across
fire treatments and years was 0.11 with the observed K
value .410/999 null values (null model 1), indicating no
phylogenetic signal in species abundances, on average, in
the oak savanna understory (Table 1). There was
significant phylogenetic signal in species distributions
across the fire gradient, however. The K value for species
relative abundance in the unburned treatment was 0.25
(observed phylogenetic signal, Kobs . 997/999 null
values, P ¼ 0.003). Similarly, the K for species relative
abundance in the highest frequency burn treatment was
0.24 (Kobs . 996/999 null values, P¼ 0.004). Observed
K values did not fall within the 95% confidence interval
for Brownian motion evolution (null model 2). This was
true for all K values in Table 1, and null model 2 results
are not shown. Thus, phylogenetic signal in the
unburned and most frequently burned communities
was greater than expected at random, but not as high
as would be expected if species abundance patterns had
evolved under Brownian motion evolution.
Abundance values in any given year, averaged across

all fire treatments, showed no phylogenetic signal, with
the exception of 1995, which was marginally significant
(K¼ 0.14, Kobs . 925, P¼ 0.076; Table 1). This survey
year corresponds to the recovery period after the
drought, during which period phylogenetic beta diver-
sity also spiked (Fig. 3C). The marginally significant K
indicates that niche conservatism played some role in
which species were able to colonize after the drought.
Several functional traits (including plant height, leaf

length, leaf %N, and perimeter per leaf area) also had
significant K values relative to null model 1, although
specific leaf area did not (Table 1). As before, observed
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K values for all traits, except SLA, indicate that trait
values were more similar among close relatives than
expected at random, but not as conserved as would be
expected under Brownian motion evolution. Thus,

phenotypes that might influence how species sort across
the fire frequency gradient were phylogenetically
conserved, at least in comparison to a random
expectation.

FIG. 4. Phylogenetic depth of species turnover between unburned and fire-treated communities, averaged across years (upper
panels), and between consecutive sample years, averaged across fire treatments (lower panels), relative to null models in which
species biomass values are randomized across communities and total species richness and number of occupancies is constrained. (A)
Bray-Curtis dissimilarity (d ) between unburned communities (Fire 0) and all fire treatments: Fire 0 vs. Fire 1 (blue), Fire 0 vs. Fire
2 (green), Fire 0 vs. Fire 3 (orange), and Fire 0 vs. Fire 4 (red) and between Fire 1 vs. 2 (cyan), Fire 2 vs. 3 (purple) and Fire 3 vs. 4
(olive green), averaged across years and plotted for taxa across increasing phylogenetic depth. The mean (solid lines) and 95%
confidence intervals (dotted lines) for null models for each pairwise treatment comparison are shown computed by randomized
species biomass values across communities, constraining biomass totals per species. Colors of the null models correspond to each
pairwise treatment comparison but are highly overlapping. (B) Standardized effect sizes for the same comparisons as in panel (A):
(obs d – null mean d )/SD null. The pink line indicates the phylogenetic depth (80 mya) where dissimilarity starts to decrease most
rapidly between the unburned communities and the communities subject to high fire frequency. At this depth, the clades that
contribute most to dissimilarity can be easily identified in Fig. 1A. (C) Bray dissimilarity for consecutive year pairs plotted for taxa
at increasing phylogenetic depth; 1984 vs. 1990 (red); 1990 vs. 1995 (dark red); 1995 vs. 2000 (dark green); 2000 vs. 2005 (light
green); 2005 vs. 2010 (blue). Null models are computed by randomization of species biomass values across communities in both
years with biomass totals per species constrained. Calculations for observed and null dissimilarities are constrained to communities
common to both years in each pair. Colors of the null models correspond to each pairwise year comparison. (D) Standardized effect
sizes for panel (C).

August 2012 S63COMMUNITY ASSEMBLY OF THE OAK SAVANNA



DISCUSSION

We found evidence for phylogenetic conservatism in
the responses of plant communities to a 40-year fire
frequency experiment. Closely related species sorted
more similarly than would be expected (from random
sorting) across communities that were unburned and
frequently burned, indicating conservatism in the
environmental niches driven by fire frequency. Func-
tional traits that might influence how species sort across
the gradient were also largely phylogenetically con-
served. Turnover in composition in response to fire
occurred largely among lineages that diverged between
80 and 140 mya, highlighting the deep footprint of
evolutionary history on current ecological processes.
Large abundance differences between unburned wood-
lands and frequently burned savanna grasslands were
found within the Poales, Campanulids, and Rosales.

Response to climatic perturbation was marked, but
only weakly associated with phylogenetic history;
turnover before and after a major drought occurred
among recently diverged taxa across many branches of
the phylogeny and can be attributed largely to spikes or
declines in abundance of species rather than to changes
in their presence or absence. These abundance shifts
altered phylogenetic community structure and trait
composition, which subsequently returned to values
similar to the pre-drought period.

Phylogenetic niche conservatism across woodland–
savanna, fire frequency gradient

Species sorted across the fire gradient in a manner that
reflects deep evolutionary history within the angio-
sperms. Multiple lines of evidence support this conclu-
sion. First, species abundance patterns at both extremes
of the gradient (enclosed woodlands at one end and open
savanna on the other) had higher than expected K values,
but total species abundances did not. In other words,
species with high fire frequency niches are more closely
related than expected at random; likewise, species in
unburned niches are more closely related than expected
(Table 1). We note that intermediate fire frequencies did
not have phylogenetically conserved abundance patterns,
suggesting that dispersal across the savanna–woodland
mosaic create mixed assemblages of fire-tolerant and
intolerant species in conditions where filtering is less
severe. Second, we found increasing phylogenetic dis-
similarity between communities with greater differences
in fire frequency, such that phylogenetic beta diversity
was maximal across the treatment extremes (Fig. 3B;
ANOSIM results in Appendix D). Lineages most
abundant in communities under the highest frequency
fire regime diverged from lineages most abundant in
unburned communities between 80 and 140 mya (Figs. 1
and 4). In contrast, the turnover between fire treatments
of different frequency was much lower and occurred
between lineages that diverged more recently.

TABLE 1. Phylogenetic signal in (A) species functional traits, (B) in species abundances in all communities and within each fire
treatment, and (C) in species abundance in each year.

A) Functional traits:

Trait Kobs K.mean.null Sim . obs K.ses P

Plant height 0.29* 0.11* 4* 5.35* 0.005*
Leaf length 0.35* 0.19* 23* 2.34* 0.024*
Specific leaf area (log) 0.20 0.18 211 0.63 0.212
Leaf N concentration 0.28* 0.18* 10* 3.28* 0.011*
Perimeter per area ratio of leaf 0.35* 0.19* 8* 3.00* 0.009*

B) Species abundance (averaged for all years):

Community K K.mean.null Sim . obs K.ses P

All communities 0.11 0.14 410 0.02 0.411
Unburned communities 0.25* 0.10* 2* 5.18* 0.003*
Low-frequency burning 0.11 0.10 146 0.71 0.147
Medium-frequency burning 0.10 0.11 422 #0.27 0.423
Med-high frequency burning 0.10 #0.11 524 0.10 0.525
Most frequently burned communities 0.24* 0.10* 3* 5.52* 0.004*

C) Species abundance (averaged for all fire treatments):

Year K K.mean.null Sim . obs K.ses P

1984 0.11 0.11 399 #0.05 0.400
1990 0.12 0.12 205 0.56 0.206
1995 0.14! 0.10! 75! 0.69! 0.076!
2000 0.14 0.11 116 0.32 0.117
2005 0.13 0.11 215 0.24 0.216
2010 0.13 0.12 199 0.03 0.200

Notes: The observed phylogenetic signal (Kobs) is quantified as Blomberg’s K and compared to a null model in which species are
randomized across the tips of the phylogeny 999 times. K.mean.null is the mean value of the null model. The rank of the observed K
is given relative to the null observations showing the number simulated that are greater than the observed (sim . obs). The
standardized effect size (K.ses) is (Kobs – K.mean.null)/SD null.

* P , 0.05; ! P , 0.10.
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Third, functional traits that influence how species sort
across the gradient, such as maximum height (high
values of which are critical to competitive ability capture
light in shady woodland conditions) and leaf N
concentration (high values of which are critical for
photosynthetic light-use efficiency in low-light condi-
tions) also tend to show phylogenetic conservatism
(Table 1). Across the fire frequency gradient, species
shift from those in the unburned woodland that invest in
light and carbon harvesting to those in the fire-promoted
open savanna that invest in photoprotection, desiccation
tolerance, and N competition strategies. Our previous
work in this system revealed conservatism in species
light availability niches, analyzed at the 0.5-m2 scale,
and in functional traits associated with light availability
(Willis et al. 2010). Conservatism in response to fire
frequency may be related to conservatism in response to
light and nitrogen availability because increasing fire
frequency drives an increase in light and a decrease in
nitrogen availability (Reich et al. 2001a). Taken
together, these studies demonstrate that species ecolog-
ical distributions across multiple spatial scales are
significantly influenced by their evolutionary heritage.

Consequences of fire frequency for community diversity
and structure

High-frequency fires alter phylogenetic community
structure (Fig. 2B, C) and the phylogenetic composition
of communities by allowing recruitment of many species
from across major angiosperm lineages, including the
Asteraceae, Fagaceae, and Poaceae, which tend to be
excluded or reduced in abundance in the absence of fire
(Figs. 1 and 4). Differences between burned and
unburned communities are large and significant in terms
of species richness, overall phylogenetic diversity (PSV),
phylogenetic distances between close relatives (MNTD;
Fig. 2A–D), community-weighted functional trait means
(Fig. 2E–H), and phylogenetic community composition
(Fig. 3). Unburned successional woodlands harbor the
lowest species richness and lowest overall phylogenetic
diversity (PSV), while higher fire frequency treatments
harbor greater species richness and phylogenetic diver-
sity (Fig. 2). Plant communities left unburned have the
highest phylogenetic distance between close relatives, as
indicated by the higher than expected MNTD values.
Thus, close relatives tend not to co-occur, a pattern that
might be expected if competition for light or nutrients
structure these communities (Darwin 1859, Elton 1946,
Webb et al. 2002). For example, high abundance of
hazelnut (Corylus) may preclude recruitment of other
taxa in the Fagales (such as oaks [Quercus]). Competi-
tion is a plausible explanation given the higher density of
the vegetation in unburned plots relative to burned plots
and the taller maximum height, higher leaf %N, and
higher SLA, traits associated with canopy access and
competitive growth strategies (sensu Grime 1977). Still,
interpreting the higher than expected MNTD in terms of
competition requires caution given the multiplicity of

factors that may cause the same pattern (Cavender-
Bares et al. 2009). In contrast, fire treatments tend to be
phylogenetically clustered (low MNTD; Fig. 2C), a
pattern expected if close relatives share adaptations for
frequent fire disturbance and stresses associated with
fire, including high light and reduced water availability.
The conservatism in leaf level traits, such as high C:N
ratios (low leaf %N) and short aboveground height,
suggests that they do.

Functional diversity offers yet another perspective.
Intermediate fire frequency treatments harbor the
highest functional diversity in most years. Intermediate
treatments are the most heterogeneous in terms of light
availability (and likely soil N availability), thus allowing
contrasting yet successful growth and stress tolerance
strategies of taxa distributed in a patchy mix of open
savanna and woodland vegetation. It is interesting that
these intermediate fire frequencies support the highest
functional diversity, but it is achieved with lower
phylogenetic diversity than in the highest frequency
treatment.

Climatic perturbation and dynamics
of communities over time

There are several indications of a marked perturba-
tion in community structure in the late 1980s that is
captured in the 1990 sampling. A distinct reduction in
the mean nearest phylogenetic taxon distance (MNTD)
of communities occurred in 1990 (Fig. 2B) that is not
reflected in species richness. The shift in phylogenetic
community structure is accompanied by shifts in trait
composition for leaf length, specific leaf area, and leaf
nitrogen concentration (Fig. 2). The phylogenetic
ordination also indicates an important shift in phyloge-
netic community structure in the 1990 census. We
interpret these shifts as a response to the severe and
prolonged drought accompanied by record high tem-
peratures that occurred during the growing seasons from
1986 to 1988. Previous studies of the natural grassland
and woodland vegetation close to our study site have
documented large perturbations in community dynamics
in response to this drought period (Haddad et al. 2002,
Dovciak et al. 2005). The pattern of increased phyloge-
netic clustering, indicated by the drop in MNTD across
all treatments in 1990 (Fig. 2C), may provide a signal of
environmental filtering caused by climatic perturbation.
That trait means and phylogenetic community structure
tend to recover has implications for understanding the
long-term resiliency of the oak savanna system.

The direction of change (prior to or following 1990) in
community-weighted trait means support the interpre-
tation of environmental filtering caused by prolonged
drought and heat. The increase in leaf length (Fig. 2F)
suggests an increase in relative abundance of grasses
following the drought. Specific leaf area (SLA) also
declined sharply (Fig. 2G). The decline would be
predicted in response to drought stress both phenotyp-
ically and resulting from shifts in species and their
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abundance. Plasticity is not considered in this study, and
the decline results largely from species shifts in
abundance. Abundance of species with thinner, desic-
cation-intolerant species would be expected to decline in
abundance in favor of species with thicker, drought-
tolerant leaves (Westoby et al. 2002, Ackerly 2004,
Franco et al. 2005). Such stress-tolerant species would
likely have lower leaf nitrogen concentrations, a pattern
which also is apparent in 1990 (Fig. 2H; Wright et al.
2001, Poorter et al. 2006).

The phylogenetic depth of species turnover through time

Turnover in species composition through time sup-
ports our hypothesized community response to climatic
perturbation. The beta diversity analysis of species
turnover at increasing depths in the phylogeny shows
that following the severe drought of the late 1980s, a
shift in community structure occurred largely among
taxa that diverged relatively recently (,20 mya; Fig. 4A;
1984 vs. 1990). A subsequent shift in community
structure between 1990 and 1995 occurred among taxa
that diverged at deep levels of the phylogeny (Fig. 4A, B;
1990 vs. 1995). In all subsequent sample years, turnover
was less than expected by the null model, indicating
greater continuity in composition than expected at
random. Our interpretation of this pattern is that
drought caused a shift in composition largely among
close relatives between 1984 and 1990. Longer term,
after climate conditions reversed and as communities
recovered from this perturbation (1990 vs. 1995),
another major shift in composition occurred among
taxa that diverged deep in the phylogeny; a shift that
persisted for the rest of the sampling period. This result
highlights the importance of long term data in phylo-
genetic ecology (see also Willis et al. 2008, Cadotte et al.
2012, Norden et al. 2012), in providing novel insights
into the signature of evolutionary history in temporal
shifts in communities.
Despite these perturbations in phylogenetic commu-

nity structure and function, there was only weak
phylogenetic signal in species abundances following the
drought period, averaged across fire treatments. Grasses
(Poaceae), in particular, were more strongly selected for
following the drought than in other years, but other
species selected for or against by the extreme climatic
period in the late 1990s were drawn from across the
phylogeny. These results invite further investigation on
the extent to which responses of natural communities to
long-term climate change (cf. Edwards and Donoghue
2008, Willis et al. 2008) will reveal a deep evolutionary
footprint.

CONCLUSION

This study highlights the signature of evolutionary
history in species sorting across a major ecotone driven
by fire frequency. The phylogenetic and functional
differentiation among species that occupy opposite ends
of the fire frequency gradient reflects deep evolutionary

divergence (.80 mya) and phylogenetic niche conserva-
tism within fire frequency niches. The study also
demonstrates community compositional changes at
contrasting phylogenetic depths immediately following
climatic perturbation and after recovery from perturba-
tion, with apparent long-lasting consequences. Despite
persistent compositional shifts, the overall pattern of
recovery of trait means and phylogenetic community
structure after the climatic ‘‘shock’’ has implications for
long-term resilience of the oak savanna system. This
pattern was not apparent from simpler measures of
community structure, such as species richness. Finally,
environmental filtering in response to fire and climatic
perturbation is associated with shifts in functional trait
composition that provide a mechanistic basis for
community change. Taken together, these findings
regarding the dynamics of this particular endangered
oak savanna ecotone are likely relevant for fire-
dominated tree–grass ecotones everywhere.
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