Office Address

1479 Gortner Avenue
St. Paul, MN 55108
United States

Janet L.


Biochemistry Molecular Biology and Biophysics

Our research focus is to develop a nontoxic and tumor-targeted cancer therapy that uses virulence-attenuated bacteria engineered to express and release immunomodulators directly into the microenvironment of breast and fibrosarcoma tumors.

Research statement

One of my primary research interests focuses on the regulation of gene expression in cells in response to stresses such as desiccation, nutrient deprivation, culture density, osmotic stress, heat shock, and mechanical stress. Our approaches include studying the regulation of transcription, mRNA degradation and protein synthesis in cells grown under a variety of culture conditions.

A new interest in the lab is the development of microbial-based therapies for cancer. An attenuated strain of Salmonella enterica Typhimurium is currently used in these studies. This organism is a gram-negative facultative bacterium that can invade and divide with macrophages and other cell types and thrives in hypoxic areas of tumors. Previous reports have indicated that administration of this organism significantly reduced tumor size and number in mouse models of metastatic osteosarcoma, primary neuroblastoma and liver adenocarcinoma. Current work is focused on optimizing the cancer suppressing activity of this bacterium by expressing various cytokine genes and determining the most effective protocol for administration of this organism to the mice with potential future applications to humans.

Selected publications

Scherer, C.M., J.L. Schottel and A. Aksan. 2009. Membrane phase behavior of Escherichia coli during desiccation, rehydration, and growth recovery. BBA-Biomem. 1788:2427-2435.

Schottel, J.L., P.M. Orwin, C.R. Anderson and M.C. Flickinger. 2008. Spatial expression of a mercury-inducible green fluorescent protein within a nanoporous latex-based biosensor coating. J. Ind. Microbiol Biotechnol. 35:283-290.

Flickinger, M.C., M. Fidaleo, J. Gosse, K. Jannek, S. Charaniya, C. Solheid, O.K. Lyngberg, M. Laudon, H. Ge, J.L. Schottel, D.R. Bond, A. Aksan, and L.E. Scriven. 2008. Engineering Nanoporous Bioactive Smart Coatings Containing Microorganisms: Fundamentals and Emerging Applications. In: “Smart Coatings II” (T. Provder and J. Baghdachi, ed.). American Chemical Society.

Flickinger, M.C., Schottel, J.L., Bond, D.R., Aksan,A., and Scriven, L.E. 2007. Painting and printing living bacteria: Engineering nanoporous biocatalytic coatings to preserve microbial viability and intensify reactivity. Biotechnol. Prog. 23:2-17.

Schottel, J., C. Anderson and M. Flickinger. 2005. Mercury biosensors: Spatial expression of mercury-induced green fluorescent protein or luciferase in Escherichia coli immobilized in latex biocatalytic coatings. Cryobiology 51:384.

Ryan, A.D., L.L. Kinkel, and J.L. Schottel. 2004. Effect of pathogen isolate, potato cultivar, and antagonist strain on potato scab severity and biological control. Biocontrol Science and Technology. 14:301-311.

Flickinger, M.C., S. Charaniya, C. Solheid, C.R. Anderson, O.K. Lyngberg, H. Ge, J.L. Schottel, and L.E. Scriven. 2004. Catalytic Coatings - Multi-Layer, Permeable, Reactive Latex Coatings Containing Living Bacteria: Applications for Biosensors, Bio-Electronic Devices, and Biocatalysis.  European Coating Conference, Smart Coatings III; Berlin, Germany.