Ectomycorrhizal host specificity in a changing world: can legacy effects explain anomalous current associations?

Lotus Lofgren1, Nhu H. Nguyen2 and Peter G. Kennedy1,3

1Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN 55108, USA; 2Department of Tropical Plant and Soil Sciences, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA; 3Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA

Author for correspondence:
Lotus Lofgren
Tel: +1 612 598 8963
Email: Llofgren@umn.edu

Received: 5 November 2017
Accepted: 19 December 2017

New Phytologist (2018)
doi: 10.1111/nph.15008

Key words: ectomycorrhizal (ECM) fungi, host specificity, legacy effects, neighborhood effects, Suillus.

Summary

- Despite the importance of ectomycorrhizal (ECM) fungi in forest ecosystems, knowledge about the ecological and co-evolutionary mechanisms underlying ECM host associations remains limited.
- Using a widely distributed group of ECM fungi known to form tight associations with trees in the family Pinaceae, we characterized host specificity among three unique Suillus–host species pairs using a combination of field root tip sampling and experimental bioassays.
- We demonstrate that the ECM fungus S. subaureus can successfully colonize Quercus hosts in both field and glasshouse settings, making this species unique in an otherwise Pinaceae-specific clade. Importantly, however, we found that the colonization of Quercus by S. subaureus required co-planting with a Pinaceae host.
- While our experimental results indicate that gymnosperms are required for the establishment of new S. subaureus colonies, Pinaceae hosts are locally absent at both our field sites. Given the historical presence of Pinaceae hosts before human alteration, it appears the current S. subaureus–Quercus associations represent carryover from past host presence. Collectively, our results suggest that patterns of ECM specificity should be viewed not only in light of current forest community composition, but also as a legacy effect of host community change over time.

Introduction

There is widespread recognition that both plant health and ecosystem functioning are strongly influenced by symbiotic interactions with microorganisms (Van der Heijden et al., 2008). In many forest soils, trees form close associations with ectomycorrhizal (ECM) fungi, which facilitate nutrient and water acquisition in exchange for photosynthetically derived sugars (Smith & Read, 2008). Unlike associations between plants and other microbial groups (e.g. arbuscular mycorrhizal fungi or nitrogen-fixing bacteria), a considerable number of ECM fungi exhibit strong patterns of host specificity (Molina et al., 1992). This specificity is most often observed at the level of host family or genus and involves a diverse array of plant lineages (e.g. Alnus (Molina, 1979), Pisonia (Hayward & Horton, 2012), Gnetum (Tedescoo & Pölme, 2012), Pinaceae (Bruns et al., 2002)). Despite some informed speculation (Kropp & Trappe 1982; Bruns et al., 2002; Walker et al., 2014), our current understanding of the ecological and co-evolutionary mechanisms underlying ECM host association patterns remains limited. Plant control of colonization by ECM fungi may take place at multiple stages of mycorrhization, including spore germination, directed mycelial growth, plant–fungal contact, during formation of the Hartig net, or after mycorrhization in response to nutrient transfer (Fries, 1984; Duddridge, 1986; Ditengou et al., 2015; Hortal et al., 2017). Although both spore and mycelial colonization are thought to occur in response to host-initiated molecular triggers, spores and mycelia probably require distinct molecular signals in order for colonization to occur and it is likely that a plant’s ability to trigger spore germination is independent of the ability to ultimately form functional mycorrhizas with a given fungal species (Palm & Stewart, 1984; Kikuchi et al., 2007; Ishida et al., 2008). Because signaling molecule quantity and quality are dependent on host identity (Palm & Stewart, 1984; Massicotte et al., 1994), forest community composition has important ecological consequences for host specificity.

The process of mycorrhization often occurs in the context of many potential host plants. Deviations from expected host specificity patterns may be mediated by either a mycelial- or spore-based mechanism, both of which may be influenced by third-party organisms. For example, the potential for alternative host associations can arise when ECM fungi already established on a primary host simultaneously colonize a second host via mycelial networks, or when proximal plants or microbial organisms trigger spore germination in ECM species that would otherwise exhibit dormancy (Fries, 1984; Hubert & Gehring, 2008; Bogar & Kennedy, 2013; Bogar et al., 2015). The ability of proximal trees to influence ECM community composition has already been
documented as an example of how neighborhood effects can act as an important mediator of host–symbiont interactions (Bogar & Kennedy, 2013). However, extending the context of plant–microbe interactions to encompass all extant community members may still fall short of encompassing the causal agents responsible for patterns of ECM host association.

Legacy effects (defined here as the long-term influence of a species after its local extinction) include anthropogenic disturbance events which can alter community dynamics many years after an event took place (Cuddington, 2011). In forest ecosystems, land use histories are important determinants of both community structure and function, with far-reaching effects on both plants and microbes (Goodale & Aber, 2001; Foster et al., 2003; Fraterrigo et al., 2006). In multi-host stands, disturbance events such as fire, disease and logging can facilitate the asymmetric removal of a given host species (Metz et al., 2012; Hollingsworth et al., 2013; Covey et al., 2015), which may open new niche space for existing hosts as well as put significant pressure on host-specific fungi to associate with nonprimary host trees.

Suillus is one of the most well-known examples of an ECM fungal lineage that exhibits a high degree of host specificity (Dahlberg & Finlay, 1999). Suillloid fungi are noted for their close associations with trees in the family Pinaceae (Molina et al., 1992; Kretzer et al., 1996; Horton & Bruns, 1998; Horton et al., 2005; Nguyen et al., 2016). Unlike many other ECM fungal lineages, Suillus species possess both reactive spores (i.e. those that readily germinate in the presence of compatible host roots) (Fries, 1978) and long-distance rhizomorphic mycelium (Agerer, 2001). This combination of traits makes them capable of readily colonizing host roots using either spore germination or mycelial extension from established ectomycorrhizas. Control of host specificity in Suillus spp. may occur at both of these stages, although most experimental tests have only been conducted via mycelial colonization (Molina & Trappe, 1982; Dudridge, 1986; Finlay, 1989; but see Liao et al., 2016). For example, in field settings, S. gregii and S. cavaipes associate exclusively with Larix, but will form ectomycorrhizas with Pinus hosts in laboratory settings (Finlay, 1989). However, the interaction with novel hosts in laboratory settings has been associated with abnormal cellular development and the accumulation of phenolic compounds as well as anomalies in host nutrient provisioning (Molina, 1979; Malajczuk et al., 1982; Dudridge, 1986; Finlay et al., 1988).

A single species of Suillus, S. subaureus, has long been cited as a possible exception to the tightly coupled relationship between Suillus and the Pinaceae. Sporocarp collection records of S. subaureus often include site descriptions that note the absence of known Pinaceae hosts and, instead, the presence of angiosperm trees such as Quercus and Populus (Smith & Thiens, 1964; Homola & Mistrerra, 1977; Kuo & Methven, 2010). Despite much speculation, to our knowledge, the natural host(s) of S. subaureus has never been confirmed. If S. subaureus associates with hosts outside the Pinaceae, it would represent either host switching or host expansion for a species deeply nested within a clade of host specialists (Kretzer et al., 1996; Nguyen et al., 2016). Such an exception would provide an ideal system for inquiry into the genetic and molecular mechanisms mediating ECM specificity, including the level at which symbiosis is regulated (such as genetic vs epigenetic factors). Finally, understanding the ecological drivers of changing ECM host associations (including host switching or host expansion from specialist to generalist fungi or gymnosperm to angiosperm associates) could have important implications for understanding and predicting plant and fungal range shifts related to anthropogenic disturbance and global change (Dickie et al., 2010; Pickles et al., 2012; Hayward et al., 2015).

In this study, we first investigated the hosts of S. subaureus observed at two geographically distant field sites and then, based on those associations, tested four hypotheses in a series of glasshouse bioassays. The first two bioassays, referred to as the Angiosperm Spore Colonization Bioassay and the Gymnosperm Spore Colonization Bioassay, were conducted to provide experimental evidence of either host expansion (i.e. colonization of multiple phylogenetically distant hosts) or host switching (i.e. colonization of hosts only in specific phylogenetic lineages) for S. subaureus. Based on our working knowledge about this study system, we hypothesized (1) that the presence of angiosperm hosts alone would not be sufficient to trigger S. subaureus spore germination and thereby prevent mycorrhization, and (2) that the presence of ancestral Pinaceae hosts would be sufficient and/or necessary to trigger spore germination and thereby lead to mycorrhization. In the third bioassay, referred to as the Mycelial Colonization Bioassay, we tested the hypothesis that S. subaureus mycorrhization on alternative hosts (angiosperms) is possible, but only when the alternative host is co-planted with the primary host (Pinaceae). Finally, in the fourth bioassay, referred to as the Primary Host Removal Bioassay, we tested the hypothesis that removal of the primary host would facilitate angiosperm colonization by S. subaureus.

Materials and Methods

Site descriptions, field sampling and species identification

Fieldwork was conducted at two locations in the midwestern United States. The first site, Lake Alexander Woods Scientific and Natural Area (SNA), was located in Cushing, MN, USA (46.158609°N, 94.561718°W, elevation c. 400 m). Mean annual temperature at the site is 4°C (maximum of 33°C in July and minimum of −32°C in January) and mean annual precipitation is c. 700 mm, which comes mostly as rain during the spring and summer months. The predominant soil type is Alstad loam. At the time of sampling, the site was a c. 70-yr-old mixed deciduous forest in which conifer trees were locally absent (a single P. strobos sapling was present in the area, but was located >75 m from the nearest S. subaureus sporocarp collection). Overstory trees included red oak (Q. rubra), paper birch (Betula papyrifera), big-tooth aspen (P. grandidentata), and sugar maple (Acer saccharum). The site is located in the ‘Pine Moraines and Outwash Plains Subsection’ of the Minnesota floristic designation, where P. strobos was a canopy-dominant species before intensive logging in the 19th century. Historical aerial photographs of the site (www.lib.umn.edu/borchert) confirm that logging events were common in the general area.
between 1939 (when the earliest photographs were taken for the area) and 1980. At the exact location where samples were collected, the most recent logging event appeared to have taken place before 1955. The second field site was located at Tolesterol Dunes National Lakeshore in Hammond, IN, USA (41.604623°N, 87.439874°W, elevation c. 180 m). Mean annual temperature is 8°C (maximum of 34°C in July and minimum of –22°C in January) and mean annual precipitation is c. 1128 mm. The predominant soil type is sand-silt from the Oakville-Adrian complex. The forest canopy was dominated by mature black oak (Q. velutina), paper birch (B. paprifera) and cottonwood (P. deltoides). Conifer trees were locally absent at the time of collection, although they are present as part of the mature ‘Dune and Swale Complex’ characteristic of the Great Lakes shoreline. Historical aerial photographs of the site (https://igs.indiana.edu/IHAPI) confirm that disturbance events (logging or periodic burning) were common in the area before 1973.

In late August 2014, nine S. subaureus sporocarps were collected from the MN site. Soil cores (15 × 15 × 15 cm) were taken directly under six of the S. subaureus sporocarps. ECM root tips were sieved from the soil and individual ectomycorrhizas exhibiting a suillusoid morphology (up to six per core) were extracted for total genomic DNA using the REDExtract-N-Amp plant kit (Sigma-Aldrich). From each sample, the fungal rRNA internal transcribed spacer (ITS) region was PCR-amplified using the primer pair ITS1–F/ITS4 (White et al., 1990; Gardes & Bruns, 1993) as well as a portion of the plant trnL chloroplast gene using the primers trnC/trnD (Taberlet et al., 1991). Amplicons were cleaned using ExoSAP-IT (USB Corp., Cleveland, OH, USA) and sequenced using single-pass Sanger sequencing with either ITS1–F (fungus) or trnC (plant) primers at the University of Arizona Genetics Core, Tucson, AZ, USA. In early October 2016, three S. subaureus sporocarps were collected from the IN site, along with one soil core taken directly under a sporocarp of S. subaureus. Fruiting body and root tips were prepared and sequenced as above.

Angiosperm spore colonization bioassay

Quercus rubra and Q. macrocarpa acorns were obtained (Sheffield Seed Co., Locke, NY, USA), cupules were removed and the acorns were surface-sterilized in 10% bleach for 12 h before being rinsed twice, placed into open plastic bags with moistened medium-grade sand (10 ml sand per 30 acorns) and stratified at 4°C for 77 d. In September 2014, P. tremuloides and P. grandidentata roots were collected from the Cedar Creek Ecosystem Science Reserve in East Bethel, MN, USA. After removing tertiary and secondary roots, the primary root was trimmed to a length of 30 cm and packed in heat-sterilized peat moss. Shoots produced from primary roots (c. 12 cm tall) were cut at the stem base, dipped in 1.6% indole butyric acid and rooted in sterilized sand for 30 d before transplanting.

Spores from the nine S. subaureus sporocarps were collected following the methods outlined by Kennedy et al. (2011) and stored in moistened sterile growth media at 4°C until use. Plant growth medium consisting of a 2 : 2 : 1 mix of peat (no. 0128P, Premier Horticulture, Quakertown, PA, USA) : forest soil (from the University of Minnesota (UMN) St Paul campus) : sand (Monterrey no. 2/16; Cemex, Marina, CA, USA) was autoclaved for 90 min at 20 psi and 121°C for two consecutive days before adding fungal inoculum. Plant growth medium was inoculated with S. subaureus spores at a concentration of 5 × 10^5 spores ml^-1 soil. Small cone-tainers (150 ml capacity) were sterilized overnight in 10% NaOCl, rinsed, dried and stuffed with a small amount of synthetic pillow stuffing to keep plant growth media in place. Seedlings were randomly arrayed on benches at the UMN Growth Facilities Greenhouse and grown under a 16 h photoperiod, 24°C : 21°C, day : night, with daily watering, and in the absence of fertilization (Fig. 1a).

Seedlings of Q. rubra and Q. macrocarpa (n = 20 per species per time point) were checked for evidence of colonization at 3 (92 d) and 6 months (185 d) after planting. P. tremuloides (n = 12) and P. grandidentata (n = 5) were destructively harvested and checked for evidence of colonization 3 months (92 d) after planting. The 6-month time point for the Populus species was not taken due to the small number of Populus cuttings that successfully rooted.

Gymnosperm spore colonization bioassay

Fruiting body of S. americanus and S. clintonianus (previously known as S. grevillei in North America (Nguyen et al., 2016)) were collected in autumn 2014 from multiple forests in Minnesota beneath P. strobus and L. laricina, respectively. The methods in this second bioassay matched those of the Angiosperm Spore Colonization Bioassay except where specified below. Spores of these two Suillus species were prepared from the fresh collections, whereas spores of S. subaureus for this second bioassay were from the same stock as above. Seeds of P. strobus and L. laricina (hereafter referred to as Pinus and Larix) were sourced from the Badoura State Forest Nursery (Minnesota Department of Natural Resources). A Q. rubra treatment was included as a negative control based on the results of the Angiosperm Spore Colonization Bioassay. Q. rubra acorns were collected from a parent tree located on the UMN St Paul campus. Pinus and Larix seeds were surface-sterilized and stratified for 60 d at 4°C following Mujic et al. (2015). Stratified seeds were germinated in sterilized plant growth media and grown for 30 d before transplanting into 350 ml cone-tainers. Individual cone-tainers were inoculated with either S. americanus, S. clintonianus or S. subaureus at a concentration of 5 × 10^5 spores ml^-1 soil. Two seedlings were planted per cone-tainer, representing two plants of the same host (n = 6 pots per treatment = 12 plants per treatment) (Fig. 1b).

Plants were grown in a second UMN glasshouse under the following conditions: 16 h photoperiod, 24°C : 21°C, day : night, daily watering and in the absence of fertilization. Seedling location was randomized and periodically rotated throughout the experiment. At 158–180 d post-inoculation, all replicates with two living plants were harvested. Each replicate was removed from its pot, and the root systems washed of soil and gently teased apart to separate the two plants. Each single root system was divided into nine
parts, randomized and scored for percentage colonization with the aid of a 9x10 dissecting microscope. For *P. strobus* and *L. laricina* seedlings, 300 root tips were scored per plant unless <300 root tips were present, in which case all available root tips were scored. For *Q. rubra* seedlings, 1000 root tips were scored per plant due to the higher abundance of fine roots.

Mycelial colonization bioassay

Plants, growth media and fungal inoculum were prepared, grown and harvested using the same methods and timeline (harvested 158–180 d after inoculation) as described above except that each pot was planted with combinations of two host species, with all host combinations represented (*n* = 9 pots per treatment = 9 plants per treatment) (Fig. 1c).

Primary host removal bioassay

Cone-tainers (350 ml) were co-planted with *P. strobus* and *Q. rubra* and inoculated as above with *S. subaureus* spores using the methods reported above. After 6 months (180 d) of growth, in half of the pots, *P. strobus* plants were hewn at the soil line, killing the seedling and removing the above-ground portion of the plant (*n* = 8 hewn and *n* = 8 unhewn). Plants were then grown for another 54 d before harvesting and scoring as above (Fig. 1d).

Morphological investigation of mycorrhizas

For all bioassays, representative and anomalous ectomycorrhizas were photographed using an Olympus Stylus TG4 and sequenced to confirm fungal identity. In all three bioassays, ITS sequencing identified that *Suillus* ectomycorrhizas were of the same species inoculated into the pots. Uninoculated controls (*n* = 6 plants) remained uncolonized throughout the experiment. For analyses of Hartig net formation for *S. subaureus* on *Pinus* and *Quercus* hosts, a representative subset of ectomycorrhizas from the bioassays were reserved and stored in formalin-acetic-alcohol fixative (ethanol : acetic acid : formalin : water at 50 : 5 : 10 : 35). To prepare for microcopy, ectomycorrhizas were rinsed in 0.1 M sodium cacodylate buffer (10 min, 3×), post-
fixed overnight at 4°C in 1% osmium tetroxide in 0.1 M sodium cacodylate buffer and dehydrated in an ethanol series. Ectomycorrhizas were then embedded in Embed 812 resin (Electron Microscopy Sciences, Hatfield, PA, USA) and semi-thin sections (0.5 μm thick) were cut on a Leica Ultracut UCT microtome (Leica Microsystems, Buffalo Grove, IL, USA) using a diamond knife. Sections were then stained with 0.5% toluidine blue and observed using a Nikon Eclipse 90i light microscope (Nikon Instruments Inc., Melville, NY, USA) in bright field mode. Images were captured with a Nikon D2-Fi2 color camera using Nikon Elements software.

Statistical analyses
To analyze differences in mycorrhizal colonization by treatment in the bioassays for which colonization was observed, we used a combination of statistical analyses. In the Gymnosperm and Mycelial Colonization Bioassays, we applied separate one-way nonparametric Kruskal–Wallis tests because assumptions of variance homogeneity could not be met due to the lack of colonization in some treatments but not others. Based on the significance of both tests, post-hoc Wilcoxon tests were then used to determine specific differences among treatment means for each pair. For the Primary Host Removal Bioassay, we again observed high heterogeneity in colonization across treatments, so applied a one-tailed Mann–Whitney U test. In all cases, significance was determined at P < 0.05 using the R programing environment (R Core Team, 2013) and JMP Pro 12 (Cary, NC, USA).

Results
Field analysis
From the six soil cores taken from beneath S. subaureus fruiting body at the Minnesota field site, four contained ectomycorrhizas exhibiting characters morphologically associated with Suillus species (white to off-white color with thick mantles and notable extramatrical mycelium). A total of 10 root tips were identified as S. subaureus in three of the four cores for which suillloid tips were present. Plant DNA was successfully extracted from six of the 10 root tips identified as S. subaureus. Of these, three yielded high-quality sequences, with the plant host identified as Q. rubra in all cases. The soil core from the Indiana field site also contained tips exhibiting characters morphologically associated with Suillus species. Fungal DNA was successfully extracted from six of the eight root tips taken for analysis and identified as S. subaureus in all cases. Plant DNA was successfully extracted from all six of those root tips and was identified as the genus Quercus in all cases (BLAST confidence was not high enough to identify the host DNA to species, but Q. velutina was the only Quercus species present at the field site).

Angiosperm spore colonization bioassay
For both the 3- and 6-month time points and for all angiosperm hosts tested, Q. rubra, Q. macrocarpa, P. tremuloides and P. grandidentata, spore inoculation failed to result in any colonization by S. subaureus.

Gymnosperm spore colonization bioassay
On Pinus, S. americanus and S. subaureus colonized at statistically equivalent mean rates of 34% (n = 10, with all plants colonized) and 28% (n = 10, with all plants colonized), respectively, whereas S. clintonianus failed to form ectomycorrhizas on this host (Wilcoxon tests, P < 0.05) (Fig. 2). (Colonization rate is defined as the total number of root tips colonized by Suillus out of ~300 counted per plant.) On Larix, S. clintonianus formed ectomycorrhizas at a mean rate of 24% (n = 12, with all plants colonized), which was significantly higher than for S. subaureus and S. americanus, which colonized at 2% (n = 12, with two plants colonized at a mean of 14%) and 0%, respectively. Neither S. americanus (n = 10 plants), S. clintonianus (n = 12 plants) nor S. subaureus (n = 12 plants) formed ectomycorrhizas with Q. rubra (hereafter referred to as Quercus).

Mycelial colonization bioassay
S. americanus formed ectomycorrhizas on Pinus at statistically equivalent mean rates of 27% (n = 7, with all plants colonized) when co-planted with Larix and 24% (n = 6, with all plants colonized) when co-planted with Quercus (Fig. 2). On Larix, S. americanus formed ectomycorrhizas at a mean rate of 4% (n = 7, with six plants colonized averaging 5% colonization) when co-planted with Pinus, but did not form ectomycorrhizas (n = 7, with all plants uncolonized) when co-planted with Quercus (Wilcoxon test, P > 0.05). On Quercus, S. americanus failed to form ectomycorrhizas regardless of host species pairing. S. clintonianus formed ectomycorrhizas on Larix at statistically equivalent mean rates of 35% (n = 5, with all plants colonized) when co-planted with Pinus and 19% (n = 7, with all plants colonized) when co-planted with Quercus. On Pinus, S. clintonianus formed ectomycorrhizas at a mean rate of 17% (n = 5, with four plants colonized at a mean rate of 21%) when co-planted with Larix. This was significantly higher than the 0% colonization of S. clintonianus on Pinus when co-planted with Quercus or on any of the Quercus seedlings (Wilcoxon tests, P < 0.05). Finally, S. subaureus formed ectomycorrhizas on Pinus at the statistically equivalent mean rates of 23% when co-planted with Larix (n = 9, with all plants colonized), 15% (n = 6, with all plants colonized) when co-planted with Quercus, and 11% on Larix when co-planted with Pinus (Wilcoxon tests, P < 0.05). By contrast, S. subaureus did not form ectomycorrhizas on Larix when co-planted with Quercus (n = 7, with all plants uncolonized) and failed to form ectomycorrhizas on Quercus regardless of host species pairing.

Morphological description of S. americanus and S. clintonianus mycorrhizas
On Larix, S. clintonianus formed typical monopodial–pyramidal ectomycorrhizas with typical root swelling, an off-
white mantle and prolific extramatrical mycelium (see Supporting Information Fig. S1a). On *Pinus*, *S. clintonianus* formed primarily monopodial ectomycorrhizas with loosely attached mantle hypha and frequent dark patches (Fig. S1b). On *Pinus*, *S. americanus* formed typical bifurcate ectomycorrhizas with a dense off-white mantle and prolific extramatrical mycelium (Fig. S1c). On *Larix*, however, *S. americanus* formed primarily monopodial ectomycorrhizas, with a loose hyphal mantle and frequent dark patches (Fig. S1b).
Primary host removal bioassay

In cone-tainers where Pinus was hewn after 5 months, S. subaureus successfully formed ectomycorrhizas on all six Q. rubra plants, at a mean colonization rate of 2% (Fig. 3) (Note that colonization rate on Quercus is defined as the total number of root tips colonized out of 1000 root tips counted per plant.) In cone-tainers where Pinus was unhewn, S. subaureus ectomycorrhizas were formed on two of the four Q. rubra plants. These two replicates were colonized at individual rates of 4% and 0.3% (mean rate = 2%). While more of the Quercus plants were colonized by S. subaureus when Pinus seedlings were hewn, there was no significant difference in the mean rates of colonization between the two treatments (n = 8, P = 0.225). To rule out contamination, fungal species identity was confirmed by sequencing the ITS region of individual mycorrhizas as described previously and were identified as S. subaureus in all cases.

Morphological description of S. subaureus mycorrhizas

Although S. subaureus formed ectomycorrhizas on Pinus, Larix and Quercus, the morphology exhibited on each of these hosts differed (Fig. 4). Unlike the nonprimary associations occasionally formed between S. americanus and Larix or between S. clintonianus and Pinus in the Gymnosperm Spore Colonization Bioassay, S. subaureus ectomycorrhizas were never monopodial and did not exhibit loosely attached mantles or dark discoloration on any of the host species tested. Rather, S. subaureus formed ectomycorrhizas that were white to orange (with larger, presumably older, ectomycorrhizas intensifying in color on all hosts), with thick mantles and prolific extramatrical mycelium. On Pinus, S. subaureus formed bifurcate ectomycorrhizas (like the ectomycorrhizas formed between S. americanus and Pinus). On Larix, S. subaureus ectomycorrhizas were monopodial–pyramidal (like the ectomycorrhizas formed between S. clintonianus and Larix) whereas on Quercus, S. subaureus ectomycorrhizas were notably coralloid (containing as many as 55 individual lobes per ectomycorrhiza) and, as a unit, several times larger than those formed on either conifer host. Cross-sections of S. subaureus mycorrhizas on both Pinus and Quercus revealed well-developed Hartig net structures on both hosts, with epidermal penetration on Quercus and outer cortical cell penetration on Pinus.

Discussion

Neighborhood effects as a function of time

Our results clearly demonstrate that the ECM fungus S. subaureus can associate with Quercus hosts, both in field and in laboratory settings, making this species unique in an otherwise Pinaceae-specific clade. We have also shown that S. subaureus can colonize two Pinaceae host species, suggesting that this species is a host generalist rather than a Quercus specialist. Because the capacity to colonize alternative hosts can be controlled either at the point of spore germination or during downstream signaling processes, host identity may influence colonization differently depending on whether spores must be germinated in order to establish fungal presence, or whether extant mycorrhizas are already present on neighboring plants (Molina et al., 1992; Kennedy et al., 2011). Consistent with earlier studies (i.e. Molina et al., 1992; Massicotte et al., 1994), our bioassays indicated that the mode of colonization (i.e. spores vs mycelium) strongly affects patterns of ECM host specificity. We observed that the spores of S. americanus and S. clintonianus germinated only in the presence of their primary hosts, and only formed a few (morphologically anomalous) mycorrhizas on alternative Pinaceae hosts when colonizing via mycelial networks. By contrast, S. subaureus germinated in the presence of both Pinaceae hosts and colonized all three hosts by mycelia (Fig. 5). Importantly, the resulting ectomycorrhizas of S. subaureus were anatomically typical of functional host associations on all three hosts (Fig. 4). While the bioassay results indicated that only Pinaceae hosts could trigger germination of S. subaureus spores, Pinaceae trees were locally absent at both field sites. Because these hosts were historically present at both locations before anthropogenic disturbance events, it appears the current S. subaureus–Quercus associations represent carryover from past host presence. This pattern echoes other studies highlighting the role of neighborhood effects in structuring ECM fungal host specificity (Bogar & Kennedy, 2013; Bogar et al., 2015), but, because S. subaureus fruiting body and mycorrhizas were found in angiosperm-only forests where Pinaceae hosts have long been locally extirpated, the spore germination triggers or mycelial inoculum originating from Pinaceae hosts cannot be considered a neighborhood effect in the traditional definition. Instead, the establishment of new S. subaureus
colonies appears to depend on triggers provided by hosts long absent from the system, suggesting that neighborhood effects should not only be viewed in light of the current host community structure, but as a function of host community change over time.

Evidence for host expansion rather than host switching

The deeply nested phylogenetic location of *S. subaureus* within the genus *Suillus* strongly suggests this species was ancestrally associated with Pinaceae hosts (Nguyen et al., 2016). If *S. subaureus* has lost the ability to colonize hosts in the Pinaceae, it would indicate this fungus has switched its association patterns to now associate exclusively with angiosperm hosts. Alternatively, the ability to colonize both angiosperm and gymnosperm hosts would indicate that this fungus has simply expanded its host range to include angiosperms. In this study, the colonization of *Quercus* seedlings coupled with frequent colonization of *S. subaureus* on *Pinus* seedlings as well as the occasional colonization on *Larix* seedlings is consistent with a pattern of host expansion rather than host switching. These results add to the growing evidence that host specialization is not necessarily an evolutionary dead-end (Desdevises et al., 2002; Nosil, 2002; Tripp & Manos, 2008; Ouvrard et al., 2015), as famously suggested by Simpson (1953).

In contrast to host–pathogen relationships, the evolutionary pressures structuring host range in fungal mutualists has been suggested to ultimately favor the maintenance of host generalism, where the capacity to colonize diverse hosts is assumed to have a positive net impact for both plant and fungal partners (as discussed by Harley & Smith, 1983). However, the high host specificity observed in most *Suillus* species appears to be a derived trait which evolved from an ancestral habit of host generalism (Nguyen et al., 2016), bringing into question the assumption that expanded host range is an evolutionary driver that is beneficial to both partners. Experimental investigation regarding how the functional benefit to each partner might vary by species, and which partner (plant or fungus) controls the mutualism were not

Fig. 4 Ectomycorrhizas formed by *Suillus subaureus* on three different host species, *Quercus rubra*, *Pinus strobus* and *Larix laricina*. Ectomycorrhizas formed a thick white mantle that turned progressively orange with age. On *Q. rubra*, *S. subaureus* developed progressively multi-lobed coralloid structures with surface area per mycorrhiza much larger than that formed on *P. strobus* or *L. laricina*. Bars, 1 mm unless otherwise noted. (a) A young *S. subaureus* mycorrhiza on *Q. rubra*. (b) A mature *S. subaureus* mycorrhiza on *P. strobus*. (c) A mature *S. subaureus* mycorrhiza on *L. laricina*. (d) Large coralloid mycorrhizas and extramatrical hyphae of *S. subaureus* on *Q. rubra*. (e) A mature *S. subaureus* mycorrhiza on *Q. rubra*. (f, g) Cross sections of *S. subaureus* on *Q. rubra* (f) and *S. subaureus* on *P. strobus* (g) mycorrhizas, stained with Toluidine blue and visualized with light microscopy. M, mantle; E, epidermis; C, cortical cells; EN, endodermis.
investigated in this study. However, examples such as *S. subaureus*, which appear to have the reverted capacity for host generalism, could provide an excellent experimental system for addressing these questions in ECM fungi.

Separating evolutionary pressure vs environmental pressure

In a recent analysis of the ECM genus *Russula*, Looney et al. (2016) showed that changes in host association from Pinaceae to angiosperms occurred at a rate 15 times higher than the inverse, suggesting the transition may be a relatively common phenomenon. Long-term disturbance regimes resulting in selective host removal could act as a driver of ECM host expansion by placing pressure on specialist fungi to secure carbon from alternative hosts (given the obligate nature of the ECM symbiosis, it is very unlikely that ECM fungi can meet any significant part of their carbon needs by living saprotrophically; Baldrian, 2009; Kohler et al., 2015). For example, repeated disturbances, such as fire, may favor alternative hosts such as *Quercus* spp. that are able to re-sprout from their existing tree bases (Crow, 1988). In the *S. subaureus* study system, we are unaware of any current populations of this fungus present in either young or mature angiosperm-only forests that have not at one point also contained hosts in the Pinaceae. However, our results suggest that Pinaceae host removal is not immediately necessary to induce angiosperm colonization by *S. subaureus* (and given the recent nature of the human disturbances (< 200 yr), it is not likely that anthropogenic influences are the selective agent directly responsible for inducing this broader host association). Rather, our results offer an example of the fitness advantage of an ECM fungus that is capable of acting as a generalist in the event of local extirpation of its primary host. Given the young age of the hosts used in glasshouse bioassays, future research examining whether the timing of primary host removal (in regard to the age of the respective host trees and the time since mycorrhizal establishment) influences colonization rates on secondary hosts will also provide greater insight into the relative importance of evolutionary vs environmental pressure as drivers of observed host associations.

Mycorrhizal morphology and colonization patterns are influenced by host identity

Root tip colonization percentages of *S. subaureus* were notably lower on *Q. rubra* compared to *S. subaureus* colonization on *P. strobus* and *L. laricina*. This result is typical of *Quercus* ECM colonization due to the extensive production of fine roots generated by this host genus (He et al., 2010; Chen et al., 2016). Similarly, the difference in Hartig net development on *Quercus* (epidermal penetration) and *Pinus* (outer cortical cell penetration) is typical of angiosperm and gymnosperm ECM development, respectively (Smith & Read, 2008; Watkinson et al., 2015). Less expected were the macro-morphological differences observed among *S. subaureus* on *Quercus* and the two gymnosperm hosts. On *Q. rubra*, *S. subaureus* produced prolific rhizomorphic mycelium and individual ectomycorrhizas exhibited greatly increased biomass and surface area over those produced on Pinaceae hosts (Fig. 4). Microscopic inspection (Fig. 4f,g) coupled with the presence of *S. subaureus* ECM root tips directly under *S. subaureus* sporocarps in the field with no primary host (*Pinus*) in the vicinity suggests that *Quercus–S. subaureus* ectomycorrhizas are functional in terms of carbon acquisition by the fungus. Similar results were observed in experimental inoculations by Finlay (1989), who found normal carbon allocation of *P. sylvestris* seedlings to *S. caviipes*, a species strictly associated with *Larix* hosts in field settings. Interestingly, the phosphorus returned from that same experimental association was notably lower than when *P. sylvestris* seedlings were colonized by *Pinus*-specific *Suillus* species. Although we did not measure physiological traits in any of our experiments, and therefore cannot make any inferences about the efficacy of *Quercus–S. subaureus*
symbioses, our combined results indicate that *S. subaureus* has the ability to both colonize and persist on both angiosperm and multiple gymnosperm hosts. The reason for the absence of *S. subaureus* on pine in field conditions is not clear, but may reflect edaphic specialization or limited competitive ability by *S. subaureus*, as has been observed with *Suillus* species in other studies (Bidartondo et al., 2001; Kennedy et al., 2011). We are currently testing the competition hypothesis with seedling bioassay experiments, but additional field-based studies are needed to fully understand the ecological factors that make *S. subaureus* rare in both angiosperm-only and mixed host forests.

Resolving the long-standing question of angiosperm hosts for *Suillus*

Although there has been anecdotal evidence of some *Suillus* species being associated with angiosperm hosts under natural conditions (Miller & Miller, 2006), to date, no reliable confirmation of these associations has been established. Seedling inoculation trials claimed that ectomycorrhizas were formed between *S. luteus* and *S. granulatus* and four *Quercus* species (Dixon et al., 1984; Dixon & Johnson, 1992), but in both of those studies, it was not accurately confirmed whether the ectomycorrhizas present belonged to *Suillus* or other ECM fungal species. In laboratory settings, by contrast, Molina & Trappe (1982) were able to successfully synthesize ectomycorrhizas between *S. brevipes*, *S. clintonianus*, *S. cariope* and *S. luteus* and a number of different host species, including the angiosperm host *Arbutus menziesii*. It was later recognized, however, that the presence of glucose in the growth medium in that and other early ECM synthesis trials effectively reduced the host specificity barriers normally present among many ECM fungi (Duddridge, 1986; Theodorou & Reddell, 1991). Similarly, Murata et al. (2015) achieved superficial colonization between *S. luteus* and *Prunus speciosa* when grown in the presence of added glucose and sucrose. In this case, however, ECM colonization consisted of limited mantle development, no Hartig net and frequent dark spotting.

Conclusions and future directions

Moving forward, we believe that assessing the effects of differences in mycorrhizal morphologies on nutrient trading dynamics, determining competitive ability, analyzing the genomic content and expression of *S. subaureus* will all aid in identifying the mechanisms that have facilitated host generalism in this species. Understanding the underlying ecological and evolutionary mechanisms driving host specificity in ECM symbioses is broadly important given the current rate of forest redistribution and changes to community composition caused by anthropogenic processes (Perry et al., 1989; Dickie et al., 2010; Pickles et al., 2012; Bogar et al., 2015; Hayward et al., 2015). Specifically, as forest landscapes undergo host migration and current host species are displaced due to climate change, studying host expansion will help in understanding both how ECM hosts and fungi came to occupy their respective niches and how each will respond to future forest community dynamics.

Acknowledgements

We thank D. McLaughlin for his documentation of the *S. subaureus* population at Lake Alexander SNA, Y. Han for assistance in processing the bioassays, G. Celio at the UNM Imaging Center for assistance with the Hartig net micrographs, and members of the Kennedy lab as well as three anonymous reviewers and F. Martin for constructive comments on previous versions of the manuscript. Financial support was provided by a National Science Foundation (NSF) Graduate Research Fellowship (grant no. 00039202) to L.L. and NSF DEB grant no. 1554375 to P.G.K.

Author contributions

L.L., N.H.N. and P.G.K. planned and designed the research; N.H.N. and P.G.K. conducted field work; L.L. conducted the bioassays and molecular lab work; L.L. and P.G.K. collected data and performed data analysis and interpretation; L.L. and P.G.K. wrote the manuscript, with editorial contributions from N.H.N.

ORCID

Lorus Lofgren http://orcid.org/0000-0002-0632-102X
Nhu H. Nguyen http://orcid.org/0000-0001-8276-7042
Peter G. Kennedy http://orcid.org/0000-0003-2615-3892

References

Supporting Information

Additional Supporting Information may be found online in the Supporting Information tab for this article:

Fig. S1 Ectomycorrhizas formed by *Suillus americanus* and *S. clintonianus* on two different host species.

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.