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a b s t r a c t

Computational modeling can be extremely useful in interpreting experimental results. Here we describe
how a relatively sophisticated stochastic model for microtubule dynamic instability in the mitotic spindle
can be developed starting with straightforward rules and simple programming code. Once this model is
developed, the method for comparing simulation results to experimental data must be carefully consid-
ered. The ultimate utility of any computational model relies on its predictive power and the ability to
assist in designing new experiments. We describe how ‘‘deconstructing” the model through the use of
quantitative animations contributes to a better qualitative understanding of model behavior. By extract-
ing key qualitative elements of the model in this fashion, model predictions and new experiments can be
more easily extracted from model results.

� 2010 Elsevier Inc. All rights reserved.
1. Microtubule dynamics in the mitotic spindle

Proper chromosome segregation during mitosis requires precise
regulation of proteins within the mitotic spindle. The alignment of
chromosomes at the spindle equator during mitosis, as well as
their subsequent segregation to opposite poles during anaphase,
depends on the attachment of chromosomes to dynamic microtu-
bule plus-ends. Thus, dynamic microtubule (MT) plus-ends coordi-
nate the motion of chromosomes throughout mitosis. Through
green fluorescent protein tagging and fluorescence imaging, it is
possible to image MTs, chromosomes, and the kinetochores that
link MT plus-ends to chromosomes [1]. Although metaphase chro-
mosomes in some organisms appear to be statically positioned at
the spindle equator, it is clear from laser photobleaching experi-
ments that MT plus-ends remain dynamic, with their component
ab tubulin subunits turning over rapidly [2–4]. Therefore, a central
question in mitosis is how MTs can remain dynamic, with rapid
turnover of their component subunits, while their length is regu-
lated such that the chromosome positions remain relatively static,
aligned around the spindle equator during metaphase.

In pursuit of this question, sophisticated genetic techniques can
be used to perturb microtubule-associated proteins. In many cases,
mutating, depleting, or overexpressing microtubule-associated
proteins results in perturbation of chromosome alignment at the
spindle equator [5–8]. These experiments provide clues regarding
the identity of the proteins that may be important in regulating
the length of MTs to establish chromosome positions at the spindle
equator during metaphase, but the chromosome misalignment
ll rights reserved.
phenotypes do not provide direct evidence regarding the exact nat-
ure of microtubule dynamics in the spindle and how these dynam-
ics may be regulated by microtubule-associated proteins.

Computational simulation of dynamic microtubule plus-ends
can thus be used as a framework to develop a physically realistic
model for how microtubule dynamics are regulated by microtu-
bule-associated proteins. In order to simulate the behavior of any
dynamic component in the cell, specific rules governing the behav-
ior of the cellular component must be established. These rules may
be based on physical constraints within the cell or cellular compo-
nent (e.g., mass or energy balances), or can simply be defined based
on phenomenological observations. In the case of microtubules, the
dynamic behavior at MT plus-ends has been described based on
in vitro experiments, and is termed ‘‘dynamic instability.” [9].

Dynamic instability behavior at the tips of dynamic microtu-
bules is characterized by random switching between growth
phases and shortening phases. Specifically, MT tips will tend to
grow at a constant velocity (Vg) until the growing MT tip suddenly
and stochastically stops growing and begins to shorten. This tran-
sition is termed a ‘‘catastrophe” event, which is characterized by
the frequency of occurrence, or the ‘‘catastrophe frequency” (kc).
Once a MT tip has a catastrophe event, the MT tip will then tend
to shorten at a constant velocity (Vs) until the growing MT tip sud-
denly and stochastically stops shortening and begins to grow
again. This second transition is termed a ‘‘rescue” event, and its fre-
quency is defined as a ‘‘rescue frequency” (kr). Thus, four parame-
ters – Vg, Vs, kc, and kr, – can completely define the dynamic
instability behavior at microtubule tips. In addition, by under-
standing how these parameters are regulated, it is possible to de-
velop a physically realistic model for how dynamic instability at
MT tips may be regulated by microtubule-associated proteins.

http://dx.doi.org/10.1016/j.ymeth.2010.01.021
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2. Stochastic simulation of microtubule dynamics

Quantitative modeling can be used to provide a framework for
understanding how the parameters of dynamic instability as de-
scribed above could be regulated to control the length of microtu-
bules during mitosis. Therefore, it is useful to understand
specifically how stochastic simulation code could be written to
incorporate the parameters of dynamic instability and thus predict
the resulting average microtubule length. The term ‘‘stochastic”
implies that the simulation will reproduce both the mean and
the standard deviation of microtubule lengths, such that the exper-
imentally observed variation between individual microtubule
lengths will be an integral part of the simulation. One method to
accomplish this goal is via ‘‘Monte–Carlo” modeling, which incor-
porates random noise into an otherwise deterministic simulation
through the use of a random number generator [10–12]. A descrip-
tion for how the Monte–Carlo method is used to simulate microtu-
bule dynamic instability is as follows.

1) Both for scalability of the final program to larger numbers of
microtubules, and to keep track of microtubule properties
such as length, position, state, etc., it is advisable to establish
a data structure to keep track of microtubules in the simula-
tion. Although there are a variety of programming languages
that could be used to simulate microtubules, the code shown
here is compatible with MATLAB programming language.
Note that the syntax will vary depending on the selected pro-
gramming language. Therefore, in MATLAB a microtubule
data structure would be established for one microtubule as
follows. Note that text after the ‘‘%” sign is simply for com-
menting and annotation. In addition, see Fig. 1A for a depiction
of the coordinate system used in this programming code.
Fig. 1. Simulation of microtubule dynamics in the mitotic spindle. (A) A typical
animated output of simulated spindle microtubule dynamics. The coordinate
system for assignment of microtubules to spindle locations (y–z planes) and for
quantification of spindle microtubule length (x axis) is shown in the lower left. (B)
With equal catastrophe (kc) and rescue (kr) frequency, simulations of spindle
microtubule dynamics result in a uniform distribution of microtubule lengths in the
spindle. (C) Spatial regulation of kr and kc controls the mean length of microtubules
in the spindle. In this simulation, the most frequent microtubule length is at spindle
position �0.22.
Microtubule(1).length=XX %starting length of

microtubule lm
Microtubule(1).state=0 %starting state(0=

growing, 1=shortening)

Microtubule(1).pole=0 %spindle pole attach

side (0=left; 1=right)

Microtubule(1).ypos=XX %y-coordinate pole

attach point

Microtubule(1).zpos=XX %z-coordinate pole

attach point
2) Then, constant values for the parameters of dynamic insta-
bility need to be established, as follows:
Vg=2 %growth velocity in lm/min
Vs=2 %shortening velocity in lm/min
kc=15 %catastrophe frequency in min

�1

kr=15 %rescue frequency in min
�1
3) In addition, a value for the spindle length itself must be
established, so that boundary conditions can be imposed
on the growth of microtubules:
Spindle_length=2 %spindle length in lm
4) Finally, the time step and simulation duration need to be
established. The time step is an important simulation
parameter. To prevent convergence of the simulation to an
incorrect value, the time step must be small enough to
ensure that both catastrophe and rescue events are rare
(<10% probability).
Duration=20 %duration in minutes

Tau = 0.0002%time step in minutes
5) Now the dynamic instability of a single microtubule
attached to one pole in a spindle can be simulated via the
Monte–Carlo method. Following are descriptions of core
code lines that are used to simulate the dynamic instability
of microtubules:

For a growing MT, the code to increase MT length from time
step #1 to time step #2 is:

Microtubule.length(2)=

Microtubule.length(1)+ Vg*Tau

For a shortening MT, the code to decrease MT length from
time step #1 to time step #2 is:

Microtubule.length(2)=

Microtubule.length(1)- Vs*Tau

Transitions between states are calculated by converting the
frequency of transitions into a probability according to a
first-order process, as follows:
For rescue:
Pr_rescue = 1-exp(-kr*Tau)

For catastrophe:
Pr_catastrophe = 1-exp(-kc*Tau)

Then, a uniformly distributed random number between 0 and
1 is generated to determine whether or not a transition occurs.
In MATLAB, this is a built-in function called ‘‘rand”, so:
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Test_transition = rand

A transition will occur if the transition probability is less
than
Test_transition.

6) All of the above described code is put together in a logical

order in time, such that at each time step a growing micro-
tubule will add length and then decide whether a catastro-
phe occurs, while a shortening microtubule will lose length
and then decide whether a rescue occurs. All code is put into
a ‘‘for” loop, which allows for repetition of all code until the
simulation duration is complete. Thus, the following is a
sample of complete code for simulation of one dynamic
microtubule over the duration of time duration.
for i = 1: duration/Tau

if Microtubule.state==0 %Microtubule is

growing

Microtubule.length(i + 1)=Microtubule.

length (i)+ Vg*Tau

Pr_catastrophe = 1-exp(-kc*Tau) %Proba-

bility of catastrophe

Test_transition = rand %calculate uni-

form random number

if Pr_catastrophe < rand%is pr less than

random number?

Microtubule.state = 1%Microtubule short-

ening next step

end

else %Microtubule state is shortening

Microtubule.length(i+1)=Microtubule.

length (i)- Vs*Tau

Pr_rescue = 1-exp(-kr*Tau)%Probability

of catastrophe

Test_transition = rand %calculate uni-

form random number

if Pr_rescue < rand %is pr less than

random number?

Microtubule.state = 0%Microtubule

growing next step

end

end

end
3. Boundary conditions

The above described code allows for stochastic growth and
shortening phases of microtubule growth, thus simulating dynamic
instability behavior at a cellular-level scale according to the param-
eters of dynamic instability that are defined within the computer
program. Thus, at the completion of the program, the microtubule
will achieve a final length that will vary each time the computer
program is run. However, the program as written above places no
constraints on the final length of simulated microtubules – micro-
tubules could grow very long, or even achieve a negative length that
has no physical corollary. To prevent physically unreasonable sim-
ulated microtubule lengths, it is advisable to place ‘‘boundary con-
ditions” within the mitotic spindle simulation [13,14]. For example,
if a microtubule depolymerizes to zero length, it will not depoly-
merize further, and a reasonable rule would be that the microtubule
would then switch back to a polymerizing state. Code to establish
this boundary condition would be placed at the start of each time
step, and could be written as follows:

if Microtubule.length(i)<= 0;

Microtubule.length(i) = 0;
Microtubule.state=0 %Microtubule switch to

growing state

end

Similarly, it may be advisable to limit the longest length of each
microtubule. If microtubules are not generally experimentally
observed to be longer than the length of the spindle, one sugges-
tion would be to limit the maximum microtubule length to be
the length of the spindle, as follows.

if Microtubule.length(i)>= Spindle_length;

Microtubule.length(i) = Spindle_length;

Microtubule.state = 1 %Microtubule switch to

shortening state

end
4. Scale-up to multiple microtubules

In general, multiple microtubules will be simulated for a given
mitotic spindle. For example, in budding yeast there are �16 kine-
tochore microtubules attached to each pole. Once a data structure
is established as described above, it is straightforward to scale up
the simulation for multiple microtubules. Following is an example
of code to scale the simulation up to 16 microtubules.To establish
initial conditions:

for mt_numb = 1: 16

Microtubule(mt_numb).length(i)=XX %starting

length of microtubule lm
Microtubule(mt_numb).state=0 %starting

state(0= growing, 1=shortening)

Microtubule(mt_numb).pole=0 %spindle pole

attach side (0=lft; 1=rht)

Microtubule(mt_numb).ypos=XX %y-coordinate

pole attach point

Microtubule(mt_numb).zpos=XX %z-coordinate

pole attach point

end

To run a simulation:

for i = 1: duration/Tau

for mt_numb = 1: 16

.

<Code here as described in above

sections, substituting

Microtubule(mt_numb).XXX for

Microtubule.XXX in all instances>

.

end

end
5. Models for the spatial regulation of dynamic instability

The MATLAB code as described above simulates the length pro-
gression in time of microtubules attached to a pole in the mitotic
spindle. This code is based on the four parameters of dynamic insta-
bility, and the values of these parameters can be varied in simulation
to better understand their effect on the length distribution of micro-
tubules in the mitotic spindle. Because this is a stochastic simulation,
replicates of the simulation for each parameter set should be run so
that both a mean and a standard deviation for microtubule lengths
can be calculated. Note that because of the randomness introduced
into the simulation via the Monte–Carlo technique, the results from
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a single run can be misleading. In our previous work, we found that
for constant and equal parameters of dynamic instability (i.e.,
Vg = Vs, and kc = kr), the microtubule plus-ends exhibit a random
walk along the length of the spindle, such that there is no bias of
the MTs towards net growth or shortening (Fig. 1B)[15,16]. In this
case, given a large number of simulations, the mean length of micro-
tubules will be approximately half of the spindle length, with a
relatively large standard deviation. An interesting question is then
to explore how microtubule dynamics may be regulated in vivo to
result in the relatively precise congression of chromosomes that is
observed during metaphase in many organisms. One way that
microtubule dynamics may be regulated is if one or more parame-
ters of dynamic instability were spatially regulated within the
mitotic spindle. For example, microtubule dynamics may change
as a function of microtubule length, which would narrow the distri-
bution of lengths [5,6,8,17,18]. Conversely, microtubule dynamics
could be regulated as a function of distance away from a spindle pole
or the spindle equator, as in a polar ejection force model, or regulated
via a spatial concentration or phosphorylation gradient of a molecule
that regulates microtubule dynamics, such as Op18/stathmin or
Ran-GTP [19–22]. The mathematical form for how a given parameter
of dynamic instability varies spatially within the mitotic spindle
could be simple or complex, depending on the assumptions made
in building the model [16,23–25]. In the example code provided
below, it is assumed that the catastrophe frequency (kc) varies line-
arly as a function of the length of the microtubule, while the
remainder of the dynamic instability parameters remain constant.
In this example, it is assumed that kc = 0.25 min�1 when a microtu-
bule length = 0 lm, and that kc increases linearly as a function of
microtubule length with slope 30 lm�1min�1. Therefore, kc varies
spatially as a function of microtubule length according to
kc = 30 l + 0.25, where l is microtubule length in lm. Using this
function, the code for calculating catastrophe frequency would be
as follows at each time step:

kc = ((Microtubule(mt_numb).length(i))*30) +

0.25
and, as before:

Pr_catastrophe = 1-exp(-kc*Tau) %Probability

of catastrophe

Test_transition = rand %generate random num-

ber between 0 and 1

if Pr_catastrophe < rand %is pr less than ran-

dom number?

Microtubule(mt.numb).state=1 %Microtubule

shortening next step

end

By spatially varying catastrophe frequency, MT ends do not exhi-
bit a random walk along the length of the spindle, but rather are at-
tracted to the specific points within the spindle where kc = kr (i.e.,
points where catastrophe frequency is balanced by rescue fre-
quency, so there is no drive towards net growth or shortening). This
type of situation is illustrated in Fig. 1C, where both catastrophe and
rescue frequency vary spatially along the length of the spindle, and
the most likely microtubule length is at spindle position 0.22.

Thus, with the simple programming code described above,
many different models for the regulation of microtubule dynamics
within the spindle can be tested.

6. Reporting results

The stochastic simulation described above results in a distribu-
tion of microtubule lengths at each time step in the simulation.
Note that the starting values for the microtubule lengths (at time
0), may have no relation to the final steady-state length distribu-
tion, so it is important that a ‘‘warm-up” period is allowed to
achieve steady-state prior to recording results. Once steady-state
is achieved, the simulated mean microtubule length and standard
deviation should remain constant, with no net trend upward or
downward regardless of the simulation duration.

The simplest method to report results will be to calculate the
average microtubule length and standard deviation at the end of
the simulation. At the end of the simulation, all microtubule
lengths can be recorded into a single array, as follows.

MT_lengths = [Microtubule(:).length(i)]

Here, the colon operator (:) selects all of the microtubules, and (i)
represents the value at the last time point in the simulation (once
the duration loop is complete). Similar to various other program-
ming languages, MATLAB has built-in functions that will allow
for calculation of statistics on the microtubule length array.
MATLAB Code for calculating the mean and standard deviation of
the microtubule length array are as follows:

Average_MT_length = mean(MT_lengths)

Std_Dev_MT_length = std(MT_lengths)

In addition, a histogram can be generated to review the distri-
bution of final microtubule lengths using the following lines of
MATLAB code.

figure;

hist(MT_lengths)

An example of a typical histogram output from MATLAB is
shown in Fig. 2A.
7. Comparison to experimental results

Simulations of microtubule dynamic instability provide a
framework for hypothesis testing to better understand how micro-
tubule dynamics are regulated during mitosis. Using the simple
programming code described above, different microtubule length
distributions can be simulated according to various rules for the
parameters of dynamic instability. Thus, by comparing the results
of these simulations to experimental data, a better understanding
of in vivo microtubule dynamics is possible. An important step in
this type of hypothesis testing is to devise an accurate method
for comparing simulation results to in vivo experiments.

The ability to accurately and quantitatively compare simulation
results to experimental results is a critical step in gaining new in-
sights into cellular processes through modeling. Therefore, this
step requires careful and creative thinking. In some systems, it is
possible to directly measure microtubule lengths and length distri-
butions via direct observation of fluorescent kinetochore and spin-
dle pole proteins [8], although multiple attachments of
microtubules to kinetochores may complicate this analysis. An-
other alternative is to use fluorescently tagged plus-end binding
proteins, and/or to tag the microtubule lattice itself with fluores-
cent tubulin. Here, in vivo microtubule length distributions can
be directly measured.

In budding yeast cells, the small size of the mitotic spindle com-
bined with the high density of microtubules and kinetochores
within the spindle leads to difficulties in resolving individual
microtubules or kinetochores with fluorescence microscopy. In this
case, we have developed a method termed ‘‘model-convolution” in
which simulated images of fluorescent proteins are convolved with



Fig. 2. Methods for comparing simulation results to experiments. (A) Histograms showing microtubule lengths at the conclusion of MT dynamics simulations. In panes 1–3
are results for single runs with 16 kinetochore microtubules (kc = kr), while pane 4 shows results averaged over 200 runs with 16 kinetochore microtubules (kc = kr). (B)
Model-convolution can be used to predict fluorescence distribution patterns for closely spaced fluorescent proteins.
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the experimentally measured microscope point spread function to
allow for a direct quantitative comparison between simulated and
experimental images (Fig. 2B)[1,16]. An Image J (National Insti-
tutes of Health) plug-in is available for performing this type of
analysis on www.umn.edu/~oddex002/.

Regardless of the approach, an essential component of hypoth-
esis testing through computational modeling is the collection of
high quality quantitative experimental data that can be directly
compared to simulation results.

8. Deconstructing the model: Graphic visualization

Once a model is developed that can reproduce experimental re-
sults, the utility of the model lies in (1) providing an informative
framework for better understanding experimental results and (2)
providing predictions that lead to further experiments for hypoth-
esis and model testing. Although building a model is in itself an
informative experience, the ultimate test of the model will be in
its predictive power. We have found that, regardless of the model’s
success in matching experimental results, a key factor in the ulti-
mate success of the modeling effort is the ability to ‘‘deconstruct”
the model. By deconstructing the model, key parameters and rules
in the model can be distinguished from less important factors.
Importantly, how the parts of the system affect the overall process
are better understood by directly observing model results upon
perturbation of parameters or model assumptions. For example,
by varying one parameter of dynamic instability (e.g., by varying
the value of Vg from a low value to a very high value), the effect
of this parameter on the overall MT length distribution is
determined.

One powerful method for deconstructing a model is to develop
a graphic visualization of the model results (Fig. 1A). By studying
quantitative animations of model results, it is possible to directly
observe the simulated interactions of model components, which

http://www.umn.edu/~oddex002/
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leads to an improved understanding of how the model is working
and can provide insights that will lead to new experiments. For
example, by selecting parameters of dynamic instability that lead
to long microtubules in the yeast spindle simulation described
above, it is clear from simulation animations that experimental
MT-associated fluorescence would be highest in the middle of
the spindle due to an excess of microtubules from both poles cross-
ing the spindle equator. Experiments with GFP-tubulin show that
MT-associated fluorescence is low at the spindle equator, thus
strongly suggesting that microtubules are short and do not fre-
quently cross the spindle equator.

Although many programming languages have a built-in capabil-
ity to allow for graphic visualization, we have found that the most
efficient method for graphic rendering of our simulations is through
the use of data visualization software that can interface with the
numerical simulation output. One freely available shareware that
is available for this purpose is OpenDX (www.openDX. org). To ren-
der animations using this software, text files are written during the
spindle simulation that include the 3D locations of every object in
the simulation (i.e., spindle poles, microtubule subunits, kineto-
chores, etc.) at selected time points in the simulation. In addition,
a state variable is written to the text file that allows for further
encoding of information into the final animation (e.g., a 0 or 1 could
be written to the text file for a given microtubule depending on
whether the microtubule is in a growing or a shortening state).
Once these files are written, they are read in by OpenDX and trans-
formed into an animated movie (Fig. 1A). The OpenDX software re-
lies on a Graphical User Interface that allows the user to select built-
in software components for animating objects. These built-in com-
ponents are selected and then manually connected to create a pro-
gram for animating results. The properties of each component can
be modified by selecting the box, which brings up a menu of options
for each. In general, OpenDX is a simple, free software with ade-
quate help available for on-line training and debugging.

9. Conclusions

Stochastic computational modeling of mitotic processes allows
for rigorous hypothesis testing and can be extremely useful in
designing experiments. We demonstrate here that a relatively
sophisticated stochastic model for microtubule dynamic instability
within the mitotic spindle can be developed starting with simple
rules and straightforward programming code. Once a model is
developed, it is important that the model results are accurately
compared to experimental results to assess the validity of the mod-
el. The ultimate test of the model’s utility will be its predictive
power and its effectiveness in generating new ideas for further
experimentation. We have found that a qualitative understanding
of the model behavior, or a ‘‘deconstruction” of the model results,
is critical to this effort. Importantly, the insights gained from
studying animated movies that are generated from quantitative
simulations can be at least as informative as graphs and other
quantitative measures in the effort to gain a better understanding
of key aspects of a biological process.
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