You are here



Nadakuduti SS, Starker CG, Voytas DF, Buell CR, Douches DS. (2019) Genome Editing in Potato with CRISPR/Cas9. Methods Mol Biol. 2019;1917:183-201.

Nadakuduti SS, Starker CG, Ko DK, Jayakody TB, Buell CR, Voytas DF, Douches DS. (2019) Evaluation of Methods to Assess in vivo Activity of Engineered Genome-Editing Nucleases in Protoplasts. Front Plant Sci. 10:110.



Bhowmik, P., Ellison, E., Polley, B., Bollina, V., Kulkarni, M., Ghanbarnia, K., Song, H., Gao, C. X., Voytas, D. F. and Kagale, S. (2018) Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Scientific Reports, 8.

Cermak, T., Zsogon, A., Naves, E. R., Notini, M. M., Freschi, L., Kudla, J., Voytas, D. F. and Peres, L. E. P. (2018) Multiplex genome editing enables creation of a novel crop through de novo domestication. In Vitro Cellular & Developmental Biology-Plant, 54, pp. S97-S98.

Curtin, S. J., Xiong, Y., Michno, J. M., Campbell, B. W., Stec, A. O., Cermak, T., Starker, C., Voytas, D. F., Eamens, A. L. and Stupar, R. M. (2018) CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. Plant Biotechnology Journal, 16(6), pp. 1125-1137.

He, J., Xu, M. L., Willmann, M. R., McCormick, K., Hu, T. Q., Yang, L., Starker, C. G., Voytas, D. F., Meyers, B. C. and Poethig, R. S. (2018) Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana. Plos Genetics, 14(4).

Hummel, A. W., Chauhan, R. D., Cermak, T., Mutka, A. M., Vijayaraghavan, A., Boyher, A., Starker, C. G., Bart, R., Voytas, D. F. and Taylor, N. J. (2018) Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnology Journal, 16(7), pp. 1275-1282.

Lowder, L. G., Zhou, J. P., Zhang, Y. X., Malzahn, A., Zhong, Z. H., Hsieh, T. F., Voytas, D. F., Zhang, Y. and Qi, Y. P. (2018) Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems. Molecular Plant, 11(2), pp. 245-256.

Macovei, A., Sevilla, N. R., Cantos, C., Jonson, G. B., Slamet-Loedin, I., Cermak, T., Voytas, D. F., Choi, I. R. and Chadha-Mohanty, P. (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnology Journal, 16(11), pp. 1918-1927.

Nadakuduti, S. S., Buell, C. R., Voytas, D. F., Starker, C. G. and Douches, D. S. (2018) Genome Editing for Crop Improvement - Applications in Clonally Propagated Polyploids With a Focus on Potato (Solanum tuberosum L.). Frontiers in Plant Science, 9.

Patrinostro, X., Roy, P., Lindsay, A., Chamberlain, C. M., Sundby, L. J., Starker, C. G., Voytas, D. F., Ervasti, J. M. and Perrin, B. J. (2018) Essential nucleotide- and protein-dependent functions of Actb/beta-actin. Proceedings of the National Academy of Sciences of the United States of America, 115(31), pp. 7973-7978.

Sanchez-Leon, S., Gil-Humanes, J., Ozuna, C. V., Gimenez, M. J., Sousa, C., Voytas, D. F. and Barro, F. (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 16(4), pp. 902-910.

Shan, Q., Baltes, N. J., Atkins, P., Kirkland, E. R., Zhang, Y., Baller, J. A., Lowder, L. G., Malzahn, A. A., Haugner, J. C., 3rd, Seelig, B., Voytas, D. F. and Qi, Y. (2018) ZFN, TALEN and CRISPR-Cas9 mediated homology directed gene insertion in Arabidopsis: A disconnect between somatic and germinal cells. J Genet Genomics.

Shan, Q. W. and Voytas, D. F. (2018) Editing plant genes one base at a time A new class of gene-editing reagents precisely alters plant genomes without creating a DNA double strand break. Nature Plants, 4(7), pp. 412-413.

Shaun, J. C., Classen, B., Gil-Humanes, J., Demorest, Z. and Voytas, D. F. (2018) Creating Healthier Food Products Through Genome Editing. In Vitro Cellular & Developmental Biology-Animal, 54, pp. S3-S4.

Zhang, F. and Voytas, D. F. (2018) Synthetic genomes engineered by SCRaMbLEing. Science China-Life Sciences, 61(8), pp. 975-977.

Zsogon, A., Cermak, T., Naves, E. R., Notini, M. M., Edel, K. H., Weinl, S., Freschi, L., Voytas, D. F., Kudla, J. and Peres, L. E. P. (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol.


Hummel AW, Chauhan RD, Cermak T, Mutka AM, Vijayaraghavan A, Boyher A, Starker CG, Bart R, Voytas DF, Taylor NJ. (2017) Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol J. [Epub ahead of print]

Lowder LG, Zhou J, Zhang Y, Malzahn A, Zhong Z, Hsieh TF, Voytas DF, Zhang Y, Qi Y. (2017) Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-Act systems. Mol Plant. pii: S1674-2052.

Curtin SJ, Xiong Y, Michno JM, Campbell BW, Stec AO, Čermák T, Starker C, Voytas DF, Eamens AL, Stupar RM. (2017) CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. Plant Biotechnology Journal. [Epub ahead of print]

Gil-Humanes. J., Wang, Y., Liang, Z., Shan, Q., Ozuna, CV., Sánchez-León, S., Baltes, NJ., Starker, C., Barro, F., Gao, C., Voytas, DF. (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant Journal. 89, 1251–1262.

Van Etten, JL., Nyquist, M., Li, Y., Yang, R., Ho, Y., Johnson, R., Ondigi, O., Voytas, DF., Henzler, C., Dehm, SM. (2017) Targeting a Single Alternative Polyadenylation Site Coordinately Blocks Expression of Androgen Receptor mRNA Splice Variants in Prostate Cancer. Cancer Res. 77(19):5228-5235.

Sánchez-León, S., Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F. (2017) Low-gluten, non-transgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J. [Epub ahead of print]

Holme, IB., Wendt, T., Gil-Humanes, J., Deleuran, LC., Starker, CG., Voytas, DF., Brinch-Pedersen, H. (2017) Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Mol Biol. [Epub ahead of print]

Baltes, NJ., Gil-Humanes, J. Voytas, DF. (2017) Genome Engineering and Agriculture: Opportunities and Challenges. Prog Mol Biol Transl Sci. 149:1-26.

Abudayyeh, OO., Gootenberg, JS., Essletzbichler, P., Han, S., Joung, J., Belanto, JJ., Verdine, V., Cox, DBT., Kellner, MJ., Regev, A., Lander, ES., Voytas, DF., Ting, AY., Zhang, F. (2017) RNA targeting with CRISPR-Cas13. Nature. [Epub ahead of print]

Songstad, D,D., Petolino, J.F., Voytas, D.F., Reichert, N.A. (2017) Genome Editing of Plants. Critical Reviews in Plant Sciences. 1-23.

Liska, F., Landa, V., Zidek, V., Mlejnek, P., Silhavy, J., Simakova, M., Strnad, H., Trnovska, J., Skop, V., Kazdova, L., Strarker, C.G., Voytas, D.F., Izsvak, Z., Mancini, M., Seda, O., Kren, V., Pravenec, M. (2017) Downregulation of Plzf gene ameliorates metabolic and cardiac traits in the spontaneously hypertensive rat. Hypertension. 69(6):1084-1091.

Cermak, T., Curtin, S.J., Gill-Humanes, J., Cegan, R., Kono, T.J.Y., Konecna, E., Belanto, J.J., Starker, C.G., Mathre, J.W., Greenstein, R.L., Votas, D.F. (2017) A multi-purpose toolkit to enable advance genome engineering in plants. The Plant Cell. 29(5).

Buell, C.R., Voytas, D.F. (2017) Technology turbocharges functional genomics. The Plant Cell. 29(5).

Tang, X., Lowder, L.G., Zhang, T., Malzahn, A.A., Zheng, X., Voytas, D.F., Zhong, Z., Chen, Y., Ren, Q., Li, Q., Kirkland, E.R., Zhang, Y., Qi, Y. (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants. 3.

Curtin SJ, Tiffin P, Guhlin J, Trujillo DI, Burghardt LT, Atkins P, Baltes NJ, Denny R, Voytas DF, Stupar RM, Young ND. (2017) Validating Genome-Wide Association candidates through quantitative variation in nodulation. Plant Physiol. 173(2):921-931. 

Wilson, M.C., Mutka, A.M., Hummel, A.W., Berry, J., Chauhan, R.D., Vijayaraghavan, A., Taylor, N.J., Voytas, D.F., Chitwood, D.H., Bart, R.S. (2017) Gene expression atlas for the food security crop cassava. New Phytologist. 213(4):1632-1641.



Butler N.M., N.J. Baltes, D.F. Voytas, D.S. Douches. (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front. Plant Sci. 7:1045.

Clasen, B.M., T.J. Stoddard, S. Luo, Z.L. Demorest, J. Li, F. Cedrone, R. Tibebu, S. Davison, E.E. Ray, A. Daulhac, A. Coffman, A. Yabandith, A. Retterath, W.J. Haun, N.J. Baltes, L. Mathis, D.F. Voytas, F. Zhang. (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J. 14(1):169-76.

Demorest Z.L., A. Coffman, N.J. Baltes, T.J. Stoddard, B.M. Clasen, S. Luo, A. Retterath, A. Yabandith, M.E. Gamo, J. Bissen, L. Mathis, D.F. Voytas, F. Zhang. (2016). Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil.  BMC Plant Biol. 16:225. 

Gan Z., L. Ding, C.L. Burckhardt, J. Lowery, A. Zaritsky, K. Sitterley, A. Mota, N. Costiglio, C.G. Starker, D.F. Voytas, J. Tytell, R.D. Goldman, G. Danuser. (2016) Vimentin intermediate filaments template microtubule networks to enhance persistence in cell polarity and directed migration.  Cell Syst. 3:252-263.

Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sánchez-León S, Baltes NJ, Starker C, Barro F, Gao C, Voytas DF. (2016) High efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J. 89(6): 1251-1262. 

Li, J., T.J. Stoddard, Z.L. Demorest, P.O. Lavoie, S. Luo, B.M. Clasen, F. Cedrone, E.E. Ray, A.P. Coffman, A. Daulhac, A. Yabandith, A.J. Retterath, L. Mathis, D.F. Voytas, M.A. D'Aoust, F. Zhang. (2016) Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production. Plant Biotechnol J. 14(2):533-42.

Liška F., R. Peterková, M. Peterka, V. Landa, V. Zídek, P. Mlejnek, J. Šilhavý, M. Šimáková, V. Křen, C.G. Starker, D.F. Voytas, Z. Izsvák, M. Pravenec. (2016). Targeting of the Plzf gene in the rat by transcription activator-like effector nucleases results in caudal regression syndrome in spontaneously hypertensive rats.  PLoS One 11:e0164206.

Nishizawa-Yokoi, A., T. Cermak, T. Hoshino, K. Sugimoto, H. Saika, A. Mori, K. Osakabe, M. Hamada, Y. Katayose, C.G. Starker, D.F. Voytas, S. Toki (2016) A defect in DNA ligase 4 enhances the frequency of TALEN-mediated targeted mutagenesis in rice. Plant Physiol. 170(2):653-66.

Osborn, M.J., B.R. Webber, F. Knipping, C.L. Lonetree, N. Tennis, A.P. DeFeo, A.N. McElroy, C. G. Starker, C. Lee, S. Merkel, T.C. Lund, K.S. Kelly-Spratt, M.C. Jensen, D.F. Voytas, C. von Kalle, M. Schmidt, R. Gabriel, K.L. Hippen, J.S. Miller, A.M. Scharenberg, J. Tolar, B.R. Blazar. (2016) Evaluation of TCR Gene Editing Achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases. Mol Ther. 24(3):570-81.

Qi, Y., Y. Zhang, J.A. Baller, D.F. Voytas. (2016) Histone H2AX and the small RNA pathway modulate both non-homologous end-joining and homologous recombination in plants. Mutat Res. 783:9-14.

Stoddard, T.J., B.M. Clasen, N.J. Baltes, Z.L. Demorest, D.F. Voytas, F. Zhang, S. Luo. (2016) Targeted Mutagenesis in Plant Cells through Transformation of Sequence-Specific Nuclease mRNA. PLoS One. 11(5):e0154634.

Tang, X., X. Zheng, Y. Qi, D. Zhang, Y. Cheng, A. Tang, D.F. Voytas, Y. Zhang. (2016) A single transcript CRISPR-Cas9 system for efficient genome editing in plants. Mol Plant. pii: S1674-2052(16)30057-0.

Vives C., F. Charlot, C. Mhiri, B. Contreras, J. Daniel, A. Epert, D.F. Voytas, M.A. Grandbastien, F. Nogue, J.M. Casacuberta. (2016) Highly efficient gene tagging in the bryophyte Physcomitrella patens using the tobacco (Nicotiana tabacum) Tnt1 retrotransposonNew Phytol. 212:759-769.



Joung JK, Voytas Df, Kames J. (Nov. 2015) Accelerating research through reagent repositories: the genome editing example. Genome Biology. 16(1):255.

Cermak T, Baltes NJ, Cegan R, Zhang Y, Voytas DF. (Nov. 2015) High-frequency, precise modification of the tomato genome. Genome Biology. 16:232.

Mark J. Osborn, Beau R. Webber, Friederike Knipping, Cara-lin Lonetree, Nicole Tennie, Anthony P. DeFoe, Amber N. McElroy, Colby G. Starker, Catherine Lee, Richard Gaberial, Sarah Merkel, Troy C. Lund, Karen S. Kelly-Spratt, Michael C. Jensen, Daniel F. Voytas, Christof von Kalle, Manfred Schmidt, Keli L. Hippen, Jeffery S. Miller, Andrew M. Scharenberg, Jakub Tolar, and Bruce R. Blazar. (October 2015) Evaluation of TCR Gene Editing achieved by TALENs, CRISPR/Cas9 and megaTAL nucleases. Molecular Therapy accepted article preview online 27 October 2015; doi:10.1038/mt.2015.197

Nicholas J. Baltes, Aaron W. Hummel, Eva Konecna, Radim Cegan, Aaron N. Bruns, David M. Bisaro, and Daniel F. Voytas. (Sept. 2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nature Plants. 15145: 1-4.

Osborn MJ, Gabriel R, Webber BR, DeFeo AP, McElroy AN, Jarjour J, Starker CG, Wagner JE, Joung JK, Voytas DF, von Kalle C, Schmidt M, Blazar BR, Tolar J. (Feb. 2015)  Fanconi Anemia Gene Editing by the CRISPR/Cas9 System. Human Gene Therapy.  26(2):114-126.

Cermak T, Starker CG, Voytas DF. (2015) Efficient design and assembly of custom TALENs using the Golden Gate platform. Methods Mol Biol. 1239:133-59.




Lor VS, Starker CG, Voytas DF, Weiss D, Olszewski NE. (Nov. 2014) Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases. Plant Physiol. 166(3):1288-91. Epub 2014 Sep 12.

Gil-Humanes J, Voytas DF. (Sept. 2014) Wheat rescued from fungal disease. Nat Biotechnol. 32(9):886-7.

Voytas DF, Gao C. (June 2014) Precision Genome Engineering and Agriculture: Opportunities and Regulatory Challenges. PLoS Biol 12(6): e1001877.

Qi Y, Starker CG, Zhang F, Baltes NJ, Voytas DF. (2014) Tailor-made mutations in Arabidopsis using zinc finger nucleases. Methods Mol Biol. 2014;1062:193-209.

Hermann M, Cermak T, Voytas DF, Pelczar P. (2014) Mouse genome engineering using designer nucleases. JoVE. (86).

Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF. (Jan. 2014) DNA Replicons for Plant Genome Engineering. Plant Cell. 26(1):151-63.



Curtin SJ, Anderson JE, Starker CG, Baltes NJ, Mani D, Voytas DF, Stupar RM.  (2013)  Targeted Mutagenesis for Functional Analysis of Gene Duplication in Legumes. Methods Mol Biol.  1069:25-42. doi: 10.1007/978-1-62703-613-9_3

Doyle EL, Hummel AW, Demorest ZL, Starker CG, Voytas DF, Bradley P, Bogdanove AJ. (Dec. 2013) TAL Effector Specificity for base 0 of the DNA Target Is Altered in a Complex, Effector- and Assay-Dependent Manner by Substitutions for the Tryptophan in Cryptic Repeat –1PLoS One.  8(12):e82120. doi: 10.1371/journal.pone.0082120.

Nyquist MD, Li Y, Hwang TH, Manlove LS, Vessella RL, Silverstein KA, Voytas DF, Dehm SM. (Oct. 2013) TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer. Proc Natl Acad Sci U S A. 110(43):17492-7. Epub 2013 Oct 7.

Christian M, Qi Y, Zhang Y, Voytas DF. (Oct. 2013) Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 (Bethesda). 3(10):1697-705.

Qi Y, Li X, Zhang Y, Starker CG, Baltes NJ, Zhang F, Sander JD, Reyon D, Joung JK, Voytas DF. (Oct 2013) Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 (Bethesda). 3(10):1707-15.

Beumer KJ, Trautman JK, Christian M, Dahlem TJ, Lake CM, Hawley RS, Grunwald DJ, Voytas DF, Carroll D. (Oct 2013) Comparing zinc finger nucleases and transcription activator-like effector nucleases for gene targeting in Drosophila. G3 (Bethesda). 3(10):1717-25.

Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch-Pedersen H, Holme IB. (Oct 2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol. 83(3):279-85. Epub 2013 May 21.

Doyle EL, Stoddard BL, Voytas DF, Bogdanove AJ. TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Biol. 2013 May 23. doi:pii: S0962-8924(13)00057-3. 10.1016/j.tcb.2013.04.003.

Wang H, Hu YC, Markoulaki S, Welstead GG, Cheng AW, Shivalila CS, Pyntikova T, Dadon DB, Voytas DF, Bogdanove AJ, Page DC, Jaenisch R. 2013 May 12. TALEN-mediated editing of the mouse Y chromosome. Nat Biotechnol. doi: 10.1038/nbt.2595. [Epub ahead of print]

Voytas DF. (2013 Apr 29) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol. 64:327-50. Epub 2013 Mar 1.

Beurdeley M, Bietz F, Li J, Thomas S, Stoddard T, Juillerat A, Zhang F, Voytas DF, Duchateau P, Silva GH. (2013) Compact designer TALENs for efficient genome engineering. Nat Commun. 2013;4:1762.

Osborn MJ, Starker CG, McElroy AN, Webber BR, Riddle MJ, Xia L, Defeo AP, Gabriel R, Schmidt M, Von Kalle C, Carlson DF, Maeder ML, Joung JK, Wagner JE, Voytas DF, Blazar BR, Tolar J. (2013) TALEN-based Gene Correction for Epidermolysis Bullosa. Mol Ther. doi: 10.1038/mt.2013.56. [Epub ahead of print]

Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, Zhang K, Liu J, Voytas DF, Zheng X, Zhang Y, Gao C. (July 2013) Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant. Jul;6(4):1365-8. Epub 2013 Jan 2

Yiping Qi,Yong Zhang, Feng Zhang, Joshua A. Baller, Spencer C. Cleland,Yungil Ryu, Colby G. Starker, and Daniel F. Voytas. (March 2013) Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res. Mar;23(3):547-54. Epub 2013 Jan 2.

Fengli Fu; Daniel F. Voytas (2013) Zinc Finger Database (ZiFDB) v2.0: a comprehensive database of C2H2 zinc fingers and engineered zinc finger arrays. Nucleic Acids Resource. (2013) 41(D1): D452-D455 

Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF.  (2013 Jan.) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol. 2013 Jan;161(1):20-7. Epub 2012 Nov 2.

Hermann, Mario, Pelczar, P, Voytas, D, Cermak T. Mouse Genome Engineering using Designer Nucleases. JoVE (Journal of Visualized Experiments). August, 2013. JoVE50930R2



Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF. (2012 Nov 2)  TALENs enable efficient plant genome engineering. Plant Physiol. 2013 Jan;161(1):20-7. Epub 2012 Nov 2.

Christian ML, Demorest ZL, Starker CG, Osborn MJ, Nyquist MD, Zhang Y, Carlson DF, Bradley P, Bogdanove AJ, Voytas DF. (2012) Targeting G with TAL Effectors: A Comparison of Activities of TALENs Constructed with NN and NK Repeat Variable Di-Residues. PLoS One. 7(9):e45383.

Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC. (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A.;109(43):17382-7.

Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug Ii RG, Tan W, Penheiter SG, Ma AC, Leung AY, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC. (2012) In vivo genome editing using a high-efficiency TALEN system. Nature. 2012 Nov 1;491(7422):114-8. Epub 2012 Sep 23.

Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ. (2012) Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 8(8):e1002861. Epub 2012 Aug 16.

Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK, Bogdanove AJ. (2012). TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W117-22. Epub 2012 Jun 12

Baller JA, Gao J, Stamenova R, Curcio MJ, Voytas DF. (2012). A nucleosomal surface defines an integration hotspot for the Saccharomyces cerevisiae Ty1 retrotransposon. Genome Res. 2012 Apr;22(4):704-13. Epub 2012 Jan 4.



Baller JA, Gao J, Voytas DF. (2011 Dec.) Access to DNA establishes a secondary target site bias for the yeast retrotransposon Ty5. Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20351-6. Epub 2011 Jul 25.

Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK. (2011). Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods. 8(1):67-9.

Zhang F, Voytas DF. (2011). Targeted mutagenesis in Arabidopsis using zinc-finger nucleases. Methods Mol Biol. 701:167-77.

Reyon D, Kirkpatrick JR, Sander JD, Zhang F, Voytas DF, Joung JK, Dobbs D, Coffman CR. (2011). ZFNGenome: A comprehensive resource for locating zinc finger nuclease target sites in model organisms. BMC Genomics. 12(1):83.

Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ, Coffman AP, Dobbs D, Joung JK, Voytas DF, Stupar RM. (2011). Targeted mutagenesis of duplicated genes in soybean with zinc finger nucleases. Plant Physiol. 156(2):466-73.

Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. (2010). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39(17):7879.

Clark KJ, Voytas DF, Ekker SC. (2011). A TALE of two nucleases: gene targeting for the masses? Zebrafish. (3):147-9.

Bogdanove AJ, Voytas DF. (2011). TAL effectors: customizable proteins for DNA targeting. Science. 333(6051):1843-6.

Knutson LD, Severin GW, Cotter SL, Zhan L, Voytas PA, George EA. (2011) A superconducting beta spectrometer. Rev Sci Instrum. 2011 Jul;82(7):073302.


Craig NL, Eickbush TH, Voytas DF. (2010). Welcome to mobile DNA. Mob DNA. 1(1):1. PMID: 20226071

Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D. (2010). ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res. 38(Web Server issue):W462-8.

Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF. (2010). High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A. 107(26):12028-33.

Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 186(2):757-61

Hou Y, Rajagopal J, Irwin PA, Voytas DF. (2010). Retrotransposon vectors for gene delivery in plants. Mob DNA. 1(1):19.

Hoshaw JP, Unger-Wallace E, Zhang F, Voytas DF. (2010). A transient assay for monitoring zinc finger nuclease activity at endogenous plant gene targets. Methods Mol Biol. 649:299-313.

Chaconas G, Craig N, Curcio MJ, Deininger P, Feschotte C, Levin H, Rice PA, Voytas DF. (2010). Meeting report for mobile DNA 2010. Mob DNA. 1(1):20.

Sander JD, Reyon D, Maeder ML, Foley JE, Thibodeau-Beganny S, Li X, Regan MR, Dahlborg EJ, Goodwin MJ, Fu F, Voytas DF, Joung JK, Dobbs D. (2010). Predicting success of oligomerized pool engineering (OPEN) for zinc finger target site sequences. BMC Bioinformatics. 11:543.


Voytas DF, Joung JK. (2009 Dec) Plant science. DNA binding made easy. Science. 2009 Dec 11;326(5959):1491-2

Townsend, J.A., Wright, D.A., Winfrey, R.J., Fu, F., Maeder, M.L., Joung, J.K. and Voytas, D.F. (2009). High frequency modification of endogenous plant genes using engineered zinc finger nucleases. Nature, 459:442-445.

Maeder, M.L., Thibodeau-Beganny, S., Sander, J.D., Voytas, D.F. and Joung, J.K. (2009). Oligomerized Pool Engineering (OPEN): and "open-source" protocol for making customized zinc finger arrays. Nature Protocols, 4:1471-1501.

Sander, J.D., Zaback, P., Joung, J.K., Voytas, D.F., Dobbs, D. (2009) An affinity-based scoring scheme for predicting DNA-binding activities of modularly assembled zinc-finger proteins. Nucleic Acids Res. 37:506-515.

Fu, F, Sander, JD, Maeder, ML, Thibodeau-Beganny, S, Joung, JK, Dobbs, D, Miller, L, Voytas, D. (2009). Zinc Finger Database (ZiFDB): a repository for information on C2H2 zinc finger proteins and engineered zinc finger arrays. Nucleic Acids Res. 37:D279-283


Brady, T.L., Fuerst, P.G., Dick, R.A., Schmidt, C. and Voytas, D.F. (2008) Retrotransposon target site selection by imitation of a cellular protein. Mol. Cell. Biol. 28:1230-1239.

Gao, X., Hou, Y., Ebina, H., Levin, H. and Voytas, D.F. (2008) Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res. 18:359-369.

Voytas DF. (2008) Genomics: fighting fire with fire. Nature. 2008 Jan 24;451(7177):412-3.

Brady TL, Schmidt CL, Voytas DF. (2008) Targeting integration of the Saccharomyces Ty5 retrotransposon. Methods Mol Biol. 2008;435:153-63

Ramirez, CL, Foley, JE, Wright, DA, Muller-Lerch, F, Rahman, SH, Cornu, TI, Winfrey, RJ, Sander, JD, Fu, F, Townsend, JA, Cathomen, T, Voytas, DF, Joung, JK. (2008). Unexpected failure rates for modular assembly of engineered zinc fingers. Nature Methods 5:374-375.

Maeder, ML, Thibodeau-Beganny, S, Osiak, A, Wright, DA, Anthony, RM, Eichtinger, M, Jiang, T, Foley, JE Winfrey, RJ, Townsend, JA, Unger-Wallace, E, Sander, JD, Muller-Lerch, F, Fu, F, Pearlberg, J, Gobel, C, Dassie, JP, Pruett-Miller, SM, Porteus, MH. Sgroi, DC, Lafrate, AJ, Dobbs, D, McCray, PB, Cathomen, T, Voytas, DF, Joung, JK. (2008). Rapid 'open-source' engineering of customized zinc finger nucleases for highly efficient gene modification. Mol. Cell, 31:294-301.


Dai, J., Xie, W., Brady, T.L., Gao, J. and Voytas, D.F. (2007). Phosphorylation regulates integration of the yeast Ty5 retrotransposon into heterochromatin. Mol. Cell 27:289-299..

Sander, J.D., Zaback, P., Joung, J.K., Voytas, D.F. and Dobbs, D. (2007). Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res. 2007 May 25; [Epub ahead of print]


Wright, D.A., Thibodeau-Beganny, S., Sander, J., Winfrey, R.J., Hirsh, A.S., Eichtinger, M., Fu, F., Porteus, M.H., Dobbs, D., Voytas, D.F. and Joung, J.K. (2006). Standardized reagents and protocols for engineering zinc finger nucleases by modular design. Nature Protocols. 1:1637-1652.


Wright DA, Townsend FA, Winfrey RJ Jr, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005). High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 44:693-705.

Review: Trends in Plant Science. 11:159-161. Gene targeting in plants: fingers on the move . Kumar, Allen, and Thompson.

Havecker ER, Gao X, Voytas DF (2005). The Sireviruses, a plant-specific lineage of the Ty1/copia retrotransposons, ineract with a family of proteins to dynein light chain 8. Plant Physiol. 139:857-68.

Gao X, Vander Velden KA, Voytas DF, Gu X (2005). SplitTester: software to identify domains responsible for functional divergence in protein family. BMC Bioinformatics. 6:137.

Gao X, Voytas DF (2005). A eukaryotic gene family related to retroelement integrases. Trends Genet. 21:133-7.


Peterson-Burch BD, Nettleton D, Voytas DF (2004). Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biology. 5:R78.

Havecker ER, Gao X, Voytas DF (2004). The diversity of LTR retrotransposons. Genome Biology. 5:225.


Gao X, Havecker ER, Baranov PV, Atkins JF, Voytas DF (2003). Translational recoding signals between gag and pol in diverse LTR retrotransposons. RNA. 9:1422-30.

Fuerst PG and Voytas DF (2003). CEN plasmid segregation is destabilized by tethered determinants of Ty 5 integration specificity: a role for double-strand breaks in CEN antagonism. Chromosoma. 2003 112:58-65.

Laten HM, Havecker ER, Farmer LM, Voytas DF (2003). SIRE1, an endogenous retrovirus family from Glycine max, is highly homogeneous and evolutionarily young. Mol Biol Evol. 2003 20:1222-30.

Zhu Y, Dai J, Fuerst PG, Voytas DF (2003). From the Cover: Controlling integration specificity of a yeast retrotransposon. Proc Natl Acad Sci U S A. 100:5891-5.

Review: Proc Natl Acad Sci U S A. 100:5586-8. Integration by design. Sandmeyer S..

Review: Cell 115:135-138. Targeting Survival: Integration Site Selection by Retroviruses and LTR-Retrotransposons. Bushman.

Havecker ER and Voytas DF (2003). The soybean retroelement SIRE1 uses stop codon suppression to express its envelope-like protein. EMBO Rep. 2003 4:274-7.


Voytas D, Ke N. (2002 Nov) Detection and quantitation of radiolabeled proteins and DNA in gels and blots. Curr Protoc Immunol. 2002 Nov;Appendix 3:Appendix 3J.

Peterson-Burch BD, Voytas DF. Books (2002 Nov.) Genes of the Pseudoviridae (Ty1/copia retrotransposons). Mol Biol Evol. 2002 Nov;19(11):1832-45.

Vigdal T, Kaufman C, Izsvak Z, Voytas D, Ivics Z. (2002 Oct) Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. J Mol Biol. 2002 Oct 25;323(3):441-52.

Gao X, Rowley DJ, Gai X, Voytas DF (2002 Apr). Ty5 gag Mutations Increase Retrotransposition and Suggest a Role for Hydrogen Bonding in the Function of the Nucleocapsid Zinc Finger. J Virol 2002 Apr;76(7):3240-7.

Wright DA, Voytas DF (2002). Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res. 2002 Jan;12(1):122-31.


Xie W, Gai X, Zhu Y, Zappulla DC, Sternglanz R and Voytas DF (2001). Targeting of the Yeast Ty5 Retrotransposon to Silent Chromatin Is Mediated by Interactions between Integrase and Sir4p. Mol. Cell. Biol. 21: 6606-6614.

Irwin PA and Voytas DF (2001). Expression and Processing of Proteins Encoded by the Saccharomyces Retrotransposon Ty5. J. Virol. 75:1790-97.

Voytas D, Ke N. Detection and quantitation of radiolabeled proteins in gels and blots. Curr Protoc Cell Biol. 2001 May;Chapter 6:Unit 6.3.

Voytas D. Agarose gel electrophoresis. Curr Protoc Immunol. 2001 May;Chapter 10:Unit 10.4.

Slatko B, Heinrich P, Nixon BT, Voytas D. Constructing nested deletions for use in DNA sequencing. Curr Protoc Mol Biol. 2001 May;Chapter 7:Unit7.2

Chen M, Choi Y, Voytas DF, Rodermel S (2000). Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease. Plant J. 2000 May;22(4):303-13

Peterson-Burch BD, Wright DA, Laten HM, Voytas DF (2000). Retroviruses in plants? Trends Genet. 2000 Apr;16(4):151-2.


Zhu Y, Zou S, Wright DA, Voytas DF (1999). Tagging chromatin with retrotransposons: target specificity of the Saccharomyces Ty5 retrotransposon changes with the chromosomal localization of Sir3p and Sir4p. Genes Dev. 13:2738-49.

Wu, D., Wright, D. A., Wetzel, C., Voytas, D. F., and S. Rodermel (1999). The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell 11:43-55.

Review: Plant Cell 11:1-4 Photosynthetic Pigmentation-- Variegations on a Theme. Smith, H. B.

Ke, N., X. Gao, J. B. Keeney, J. D. Broeke, and D. F. Voytas (1999 July). The yeast retrotransposon Ty5 uses the anticondon stem-loop of the initiator methionine tRNA as a primer for reverse transcription. RNA 5:929-38.

Ke, N., and D. F. Voytas (1999 Jan). cDNA of the Yeast retrotransposon Ty5 Preferentially Recombines with substrates in Silent Chromatin. Mol. Cell. Biol. 19:484-494.


Voytas, D. F., and G. J. P. Naylor (1998). Rapid flux in plant genomes. Nature Genetics 20: 6-7.

Gai, X., and D. F. Voytas (1998). A single amino acid change identifies a Ty5 retrotransposon domain that targets integration to silent chromatin. Molecular Cell 1:1051-55.

Review: Cell 93:1087-89. Yeast retrotransposons: finding a nice quiet neighborhood. Boeke J. D., and S. E. Devine.

Wright, D. A, and D. F. Voytas. (1998). Potential retroviruses in plants: Tat1 belongs to a lineage of Arabidopsis thaliana retrotransposons that encode envelope-like proteins. Genetics 149:703-15.

Review: Trends in Plant Sciences 3:371-74 The evolution of plant retroviruses: moving to green pastures. Kumar, A.

Kim, J. M., S. Vanguri, J. D. Boeke, A. Gabriel, and D. F. Voytas. (1998). Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 8:464-78.

Review: Genome Res. 8:416-18. Targeting transposition: At home in the genome. Sandmeyer, S.


Gabriel A, Voytas D (1997) DNA on the move. Trends Genet. 1997 Jul;13(7):258-9

Ke, N., and D. F. Voytas. (1997) High frequency cDNA recombination of the saccharomyces retrotransposon Ty5: The LTR mediates formation of tandem elements. Genetics 147:545-56.

Ke, N., P. A. Irwin, and D. F. Voytas. (1997) The pheromone response pathway activates transcription of Ty5 retrotransposons located within silent chromatin of Saccharomyces cerevisiae. EMBO J 16:6272-80.

Zou, S., and D. F. Voytas. (1997) Silent chromatin determines target preference of the Saccharomyces retrotransposon Ty5. Proc Natl Acad Sci U S A 94:7412-16.

Wright, D. A., S. K. Park, D. Wu, G. J. Phillips, S. R. Rodermel, and D. F. Voytas. (1997) Recovery of YAC-end sequences through complementation of an Escherichia coli pyrF mutation. Nucleic Acids Res 25:2679-80.


Zou, S., J. M. Kim, and D. F. Voytas. (1996). The Saccharomyces retrotransposon Ty5 influences the structure of chromosome ends. Nucleic Acids Res 24:4825-31.

Voytas, D. F. (1996) Retroelements in genome organization. Science 274:737-38.

Zou, S., N. Ke, J. M. Kim, and D. F. Voytas. (1996) The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev. 10:634-45.

Wright, D. A., N. Ke, J. Smalle, B. Hauge, H. M. Goodman, and D.F. Voytas. (1996) Multiple non-LTR retrotransposons in the streamlined genome of Arabidopsis thaliana. Genetics 142:569-78.


Zou, S., D. A. Wright and D. F. Voytas. (1995) The Saccharomyces Ty5 retrotransposon family is associated with origins of DNA replication at the telomeres and the silent mating locus HMR. Proc Natl Acad Sci U.S.A. 92:920-24.

Keeney, J. B., K. B. Chapman, V. Lauermann, D. F. Voytas, S. U. strm, U. von Pawel-Rammingen, A. Bystrm, and J. D. Boeke. (1995) Multiple molecular determinants for retrotransposition in a primer tRNA. Mol. Cell. Biol. 15:217-26.

Wetzel, C. M., C.-Z. Jiang, L. J. Meehan, D. F. Voytas, and S. R. Rodermel. (1994) Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis. Plant J. 6:161-75.

Voytas, D. F., and J. D. Boeke. Yeast retrotransposons and tRNAs. (1993) Trends Genet. 9:421-27.

Ji, H., D. P. Moore, M. A. Blomberg, L. T. Braiterman, D. F. Voytas, G. Natsoulis, and J.D. Boeke. (1993). Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73:1007-18.

VanderWiel, P. L., D. F. Voytas, and J. F. Wendel. (1993). Copia-like retrotransposable element evolution in diploid and polyploid cotton (Gossypium L.). J. Mol. Evol. 36:429-47.

Voytas, D. F., and J. D. Boeke. (1992). Yeast retrotransposon revealed. Nature 358:717.

Voytas, D. F., M. P. Cummings, A. Konieczny, F. M. Ausubel, and S. R. Rodermel. (1992). Copia-like retrotransposons are ubiquitous among plants. Proc. Natl Acad Sci U S A 89:7124-28.

Konieczny, A., D. F. Voytas, M. P. Cummings, and F. M. Ausubel. (1991). A superfamily of retrotransposable elements in Arabidopsis thaliana. Genetics 127:801-09.

Voytas, D. F., A. Konieczny, M. P. Cummings, and F. M. Ausubel. (1990). The structure, distribution and evolution of the Ta1 retrotransposable element family of Arabidopsis thaliana. Genetics 126:713-21.

Voytas, D. F., and F. M. Ausubel. (1988). A copia-like transposable element family in Arabidopsis thaliana. Nature 336:242-44.

Chory J, Voytas DF, Olszewski NE, Ausubel FM. (1987 Jan) Gibberellin-Induced Changes in the Populations of Translatable mRNAs and Accumulated Polypeptides in Dwarfs of Maize and Pea. Plant Physiol. 1987 Jan;83(1):15-23.