Bazurto J. V., Riazi S., D'Alton S., Deatherage D.E., Bruger E. L., Barrick J.E., and Marx C. J. 2021. Formaldehyde-responsive proteins, TtmR and EfgA, reveal a tradeoff between formaldehyde resistance and efficient transition to methylotrophy in Methylorubrum extorquens. BioRxiv [preprint] 2021 bioRxiv 346494 [posted 2021 January 7]. Available from: https://doi.org/10.1101/2021.01.07.425672
Bazurto J. V., Nayak D. D., Ticak T., Davilieva M., Lambert L. B., Benski O. S., Quates C. J., Johnson J. L., Patel J. S., Ytreberg F. M., Shamoo Y., and Marx C. J. 2020. EfgA is a conserved formaldehyde sensor that halts bacterial translation in response to elevated formaldehyde. BioRxiv [Preprint] 2020 bioRxiv 343392 [posted 2020 October 17]. Available from: https://www.biorxiv.org/content/10.1101/2020.10.16.343392v1.
Bazurto J. V., Bruger E. L., Lee J. A., Lambert L. B., and Marx C. J. 2020. Formaldehyde-responsive proteins, TtmR and EfgA, reveal a tradeoff between formaldehyde resistance and efficient transition to methylotrophy in Methylorubrum extorquens. BioRxiv [preprint] 2020 bioRxiv 346494 [posted 2020 October 20]. Available from: https://www.biorxiv.org/content/10.1101/2020.10.19.346494v1
Lee J. A., Riazi S., Nemati S., Bazurto J. V., Vasdekis A. E., Ridenhour B. J., Remien C. H., and C. J. Marx. 2019. Microbial phenotypic heterogeneity in response to a metabolic toxin: continuous, dynamically shifting distribution of formaldehyde tolerance in Methylobacterium extorquens populations. PLOS Genetics (Accepted). bioRxiv preprint doi: https://doi.org/10.1101/529156
Downs D. M., Bazurto J. V., Gupta A., Fonseca L.L., and E. O. Voit. 2018. The three-legged stool of understanding metabolism: integrating metabolomics with biochemical genetics and computational modeling. AIMS Microbiology. 4(2): 289-303. doi: 10.3934/microbiol.2018.2.289
Bazurto J. V., Dearth, S. P., Tague, E. D., Campagna, S. R., and D. M. Downs. 2017. Untargeted metabolomics confirms and extends the understanding of the impact of aminoimidazole carboxamide ribotide (AICAR) in the metabolic network of Salmonella enterica. Microbial Cell. 5(2): 74-87.doi: 10.15698/mic2018.02.613
Bazurto J. V. and D. M. Downs. 2016. Metabolic network structure and function goes beyond conserved enzyme components. Microbial Cell. 3(1):260-262. doi: https://doi.org/10.15698/mic2016.06.509
Bazurto J. V., Farley K. R., and D. M. Downs. 2016. An unexpected route to an essential cofactor: Escherichia coli relies on threonine for thiamine biosynthesis. mBio. 7(1):e01840-15. doi: 10.1128/mBio.01840-15
Bazurto J. V., Heitman N. J., and D. M. Downs. 2015. Aminoimidazole carboxamide ribotide exerts opposing effects on thiamine synthesis in Salmonella enterica. J. Bacteriol. 197(17):2821-2830. doi: https://doi.org/10.1128/JB.00282-15
Bazurto J. V. and D. M. Downs. 2013. Amino-4-imidazolecarboxamide ribotide (AICAR) directly inhibits coenzyme A biosynthesis in Salmonella enterica. J. Bacteriol. 196(4):772-9.doi: https://doi.org/10.1128/JB.01087-13
Bazurto J. V. and D. M. Downs. 2013. Crosstalk. Brenner’s Encyclopedia of Genetics. San Diego, CA: Academic Press. Print.
Bazurto J. V. and D. M. Downs. 2011. Plasticity in the Purine–Thiamine Metabolic Network of Salmonella. Genetics. 187(2):623-631. doi: https://doi.org/10.1534/genetics.110.124362