Bazurto Lab Publications

Bazurto J. V., Riazi S., D'Alton S., Deatherage D.E., Bruger E. L., Barrick J.E., and Marx C. J. 2021. Formaldehyde-responsive proteins, TtmR and EfgA, reveal a tradeoff between formaldehyde resistance and efficient transition to methylotrophy in Methylorubrum extorquens. BioRxiv [preprint] 2021 bioRxiv 346494 [posted 2021 January 7]. Available from:  https://doi.org/10.1101/2021.01.07.425672

Bazurto J. V., Nayak D. D., Ticak T., Davilieva M., Lambert L. B., Benski O. S., Quates C. J., Johnson J. L., Patel J. S., Ytreberg F. M., Shamoo Y., and Marx C. J. 2020. EfgA is a conserved formaldehyde sensor that halts bacterial translation in response to elevated formaldehyde. BioRxiv [Preprint] 2020 bioRxiv 343392 [posted 2020 October 17]. Available from: https://www.biorxiv.org/content/10.1101/2020.10.16.343392v1.

Bazurto J. V., Bruger E. L., Lee J. A., Lambert L. B., and Marx C. J. 2020. Formaldehyde-responsive proteins, TtmR and EfgA, reveal a tradeoff between formaldehyde resistance and efficient transition to methylotrophy in Methylorubrum extorquens. BioRxiv [preprint] 2020 bioRxiv 346494 [posted 2020 October 20]. Available from: https://www.biorxiv.org/content/10.1101/2020.10.19.346494v1

Lee J. A., Riazi S., Nemati S., Bazurto J. V., Vasdekis A. E., Ridenhour B. J., Remien C. H., and C. J. Marx. 2019. Microbial phenotypic heterogeneity in response to a metabolic toxin: continuous, dynamically shifting distribution of formaldehyde tolerance in Methylobacterium extorquens populations. PLOS Genetics (Accepted). bioRxiv preprint doi: https://doi.org/10.1101/529156

Downs D. M., Bazurto J. V., Gupta A., Fonseca L.L., and E. O. Voit. 2018. The three-legged stool of understanding metabolism: integrating metabolomics with biochemical genetics and computational modeling. AIMS Microbiology. 4(2): 289-303. doi: 10.3934/microbiol.2018.2.289

Bazurto  J. V., Dearth,  S. P., Tague,  E. D., Campagna,  S. R., and D. M. Downs. 2017. Untargeted metabolomics  confirms  and  extends  the  understanding  of  the  impact  of  aminoimidazole  carboxamide ribotide  (AICAR)  in the  metabolic  network  of Salmonella  enterica. Microbial  Cell. 5(2): 74-87.doi: 10.15698/mic2018.02.613

Bazurto  J. V. and  D. M. Downs. 2016. Metabolic  network  structure  and  function  goes  beyond conserved  enzyme  components. Microbial  Cell. 3(1):260-262. doi: https://doi.org/10.15698/mic2016.06.509

Bazurto J. V., Farley K. R., and  D. M. Downs. 2016. An  unexpected  route  to  an  essential  cofactor: Escherichia  coli relies  on  threonine  for  thiamine  biosynthesis. mBio. 7(1):e01840-15. doi: 10.1128/mBio.01840-15

Bazurto J. V.,  Heitman  N. J., and  D. M. Downs. 2015. Aminoimidazole  carboxamide  ribotide  exerts opposing  effects  on  thiamine  synthesis  in Salmonella  enterica. J. Bacteriol. 197(17):2821-2830. doi: https://doi.org/10.1128/JB.00282-15

Bazurto J. V. and  D. M. Downs. 2013. Amino-4-imidazolecarboxamide  ribotide  (AICAR)  directly inhibits  coenzyme  A  biosynthesis  in Salmonella  enterica. J. Bacteriol. 196(4):772-9.doi: https://doi.org/10.1128/JB.01087-13

Bazurto  J.  V. and  D. M. Downs. 2013. Crosstalk. Brenner’s  Encyclopedia  of  Genetics.  San  Diego,  CA: Academic  Press.  Print.

Bazurto  J.  V. and  D. M. Downs. 2011. Plasticity  in  the  Purine–Thiamine  Metabolic  Network  of Salmonella.  Genetics. 187(2):623-631. doi: https://doi.org/10.1534/genetics.110.124362