Bazurto Lab Publications

Bazurto, J. V., Riazi, S., D'Alton, S., Deatherage, D. E., Bruger, E. L., Barrick, J. E., & Marx, C. J. (2021). Global Transcriptional Response of Methylorubrum extorquens to Formaldehyde Stress Expands the Role of EfgA and Is Distinct from Antibiotic Translational Inhibition. Microorganisms9(2), 347. https://doi.org/10.3390/microorganisms9020347

Bazurto, J. V., Nayak, D. D., Ticak, T., Davlieva, M., Lee, J. A., Hellenbrand, C. N., Lambert, L. B., Benski, O. J., Quates, C. J., Johnson, J. L., Patel, J. S., Ytreberg, F. M., Shamoo, Y., & Marx, C. J. (2021). EfgA is a conserved formaldehyde sensor that leads to bacterial growth arrest in response to elevated formaldehyde. PLoS Biology19(5), e3001208. https://doi.org/10.1371/journal.pbio.3001208

Bazurto, J. V., Bruger, E. L., Lee, J. A., Lambert, L. B., & Marx, C. J. (2021). Formaldehyde-responsive proteins, TtmR and EfgA, reveal a tradeoff between formaldehyde resistance and efficient transition to methylotrophy in Methylorubrum extorquensJournal of Bacteriology203(9), e00589-20. https://doi.org/10.1128/JB.00589-20

Lee, J. A., Riazi, S., Nemati, S., Bazurto, J. V., Vasdekis, A. E., Ridenhour, B. J., Remien, C. H., & Marx, C. J. (2019). Microbial phenotypic heterogeneity in response to a metabolic toxin: Continuous, dynamically shifting distribution of formaldehyde tolerance in Methylobacterium extorquens populations. PLoS Genetics15(11), e1008458. https://doi.org/10.1371/journal.pgen.1008458

Downs D. M., Bazurto J. V., Gupta A., Fonseca L.L., and E. O. Voit. 2018. The three-legged stool of understanding metabolism: integrating metabolomics with biochemical genetics and computational modeling. AIMS Microbiology. 4(2): 289-303. doi: 10.3934/microbiol.2018.2.289

Bazurto  J. V., Dearth,  S. P., Tague,  E. D., Campagna,  S. R., and D. M. Downs. 2017. Untargeted metabolomics  confirms  and  extends  the  understanding  of  the  impact  of  aminoimidazole  carboxamide ribotide  (AICAR)  in the  metabolic  network  of Salmonella  enterica. Microbial  Cell. 5(2): 74-87.doi: 10.15698/mic2018.02.613

Bazurto  J. V. and  D. M. Downs. 2016. Metabolic  network  structure  and  function  goes  beyond conserved  enzyme  components. Microbial  Cell. 3(1):260-262. doi: https://doi.org/10.15698/mic2016.06.509

Bazurto J. V., Farley K. R., and  D. M. Downs. 2016. An  unexpected  route  to  an  essential  cofactor: Escherichia  coli relies  on  threonine  for  thiamine  biosynthesis. mBio. 7(1):e01840-15. doi: 10.1128/mBio.01840-15

Bazurto J. V.,  Heitman  N. J., and  D. M. Downs. 2015. Aminoimidazole  carboxamide  ribotide  exerts opposing  effects  on  thiamine  synthesis  in Salmonella  enterica. J. Bacteriol. 197(17):2821-2830. doi: https://doi.org/10.1128/JB.00282-15

Bazurto J. V. and  D. M. Downs. 2013. Amino-4-imidazolecarboxamide  ribotide  (AICAR)  directly inhibits  coenzyme  A  biosynthesis  in Salmonella  enterica. J. Bacteriol. 196(4):772-9.doi: https://doi.org/10.1128/JB.01087-13

Bazurto  J.  V. and  D. M. Downs. 2013. Crosstalk. Brenner’s  Encyclopedia  of  Genetics.  San  Diego,  CA: Academic  Press.  Print.

Bazurto  J.  V. and  D. M. Downs. 2011. Plasticity  in  the  Purine–Thiamine  Metabolic  Network  of Salmonella.  Genetics. 187(2):623-631. doi: https://doi.org/10.1534/genetics.110.124362