Anke Reinders

Anke Reinders

Ph.D., University of Basel
Senior Research Associate

Office: 622 BSC
Lab: 617-623 BSC

Phone: (612) 624-2791 (office) (612) 625-2776 (lab)
Fax: (612) 625-1738
Email: anke@umn.edu

My research focuses on studying the activity of sucrose and other metabolite transporters by heterologous expression in both yeast and Xenopus oocytes. Recently I have concentrated on developing strategies to determine what amino acid residues influence sucrose transporter activity, in particular substrate specificity. I am also interested in the role of membrane transporters in pollen development and function.


Publications

Reinders A, Sun Y, Karvonen KL, Ward JM (2012) Identification of amino acids important for substrate specificity in sucrose transporters using gene shuffling. J Biol Chem 287(36):30296-304

Gora PJ, Reinders A, Ward JM (2012) A novel fluorescent assay for sucrose transporters. Plant Methods 8:13

Sun Y, Lin Z, Reinders A, Ward JM (2012) Functionally important amino acids in rice sucrose transporter OsSUT1. Biochemistry 51: 3284-3291

Reinders A, Sivitz AB, Ward JM (2012) Evolution of plant sucrose uptake transporters (SUTs). Front. Plant Sci. 3: 00022

Eom JS, Cho JI, Reinders A, Lee SW, Yoo Y, Tuan PQ, Choi SB, Bang G, Park YI, Cho MH, Bhoo SH, An G, Hahn TR, Ward JM, Jeon JS (2011) Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiol. 157: 109-119

Tian H, Baxter IR, Lahner B, Reinders A, Salt DE, Ward JM (2010) Arabidopsis NPCC6/NaKR1 is a phloem mobile metal binding protein necessary for phloem function and root meristem maintenance. Plant Cell 12: 3963-3979

Sun Y, Reinders A, LaFleur KR, Mori T, Ward JM (2010) Transport activity of rice sucrose transporters OsSUT1 and OsSUT5. Plant Cell. Physiol. 51:114-22

Reinders A, Sivitz AB, Starker CG, Gantt JS, Ward JM (2008) Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicus. Plant Mol. Biol. 68: 289-299

Sivitz AB, Reinders A, Ward JM (2008) Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation. Plant Physiol. 147: 92-100

Sivitz AB, Reinders A, Johnson M, Krentz AD, Grof CPL, Perroux JM, Ward JM (2007) Arabidopsis sucrose transporter AtSUC9: high affinity transport activity, intragenic control of expression and early-flowering phenotype. Plant Physiol. 143: 188-198

Reinders A, Sivitz AB, Hsi A, Grof CPL, Perroux JM, Ward JM (2006) Sugarcane ShSUT1: analysis of sucrose transport activity and inhibition by sucralose. Plant Cell Env. 29: 1871-1880

Reinders A, Panshyshyn JA, Ward JM (2005) Analysis of transport activity of Arabidopsis sugar alcohol permease homolog AtPLT5. J. Biol. Chem. 280: 1594-1602

Sivitz AB, Reinders A, Ward JM (2005) Analysis of the transport activity of barley sucrose transporter HvSUT1. Plant Cell Physiol. 46: 1666-1673

Chandran D, Reinders A, Ward JM (2003) Substrate specificity of the Arabidopsis thaliana sucrose transporter AtSUC2. J. Biol. Chem. 278: 44320-5

Schulze WX, Reinders A, Ward J, Lalonde S, Frommer WB (2003) Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system. BMC Biochemistry 4:3

Reinders A, Schulze W, Kühn C, Barker L, Schulz A, Ward JM, Frommer WB (2002) Protein-protein interactions between sucrose transporters of different affinities colocalized in the same enucleate sieve element. Plant Cell 14: 1567-1577

Reinders A, Schulze W, Thaminy S, Stagljar I, Frommer WB, Ward JM (2002) Intra- and intermolecular interactions in sucrose transporters at the plasma membrane detected by the split-ubiquitin system and functional assays. Structure 10: 763-772

Reinders A, Ward JM (2001) Functional characterization of the α-glucoside transporter Sut1p from Schizosaccharomyces pombe, the first fungal homolog of plant sucrose transporters. Mol. Microbiol. 39: 445-454

Reinders A, Romano I, Wiemken A, De Virgilio C (1999) The thermophilic yeast Hansenula polymorpha does not require trehalose synthesis for growth at high temperatures but does for normal acquisition of thermotolerance. J. Bacteriol. 181: 4665-4668

Bell W, Sun W, Hohmann S, Wera S, Reinders A, De Virgilio C, Wiemken A, Thevelein JM (1998) Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J. Biol. Chem. 273: 33311-33319

Reinders A, Bürckert N, Boller T, Wiemken A, De Virgilio C. (1998) Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15 protein kinase. Genes  Dev. 12: 2943-2955

Ribeiro M, Reinders A, Boller T, Wiemken A, De Virgilio C (1997) Trehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe. Mol. Microbiol. 25: 571-581

Reinders A, Bürckert N, Hohmann S, Thevelein JM, Boller T, Wiemken A, De Virgilio C (1997) Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol. Microbiol. 24: 687-695

Ward JM, Reinders A, Hsu HT, Sze H (1992) Dissociation and reassembly of the vacuolar H+-ATPase-complex from oat roots. Plant Physiol. 99: 161-169