Yasu Kawakami
Office Address

515 Delaware Street SE
Minneapolis, MN 55455
United States


Kawakami, Ph.D.

Associate Professor
Genetics, Cell Biology and Development

We study the mechanisms that regulate development of the limb and trunk axial skeleton using mouse and zebrafish models, which could contribute to understanding mechanisms underlying human congenital malformations. In collaboration with physicians/physician scientists, we also study how the mis-regulation of select developmental programs causes human tumors using comparative analyses between mouse models and human patient samples. Finally, we investigate how developmental programs are regulated during regeneration of the fin and heart in zebrafish models.

Expand all

Research interests

We seek to understand the mechanisms that regulate development of cells and coordinate those cells into functional systems in the animal body.

Stem cells are characterized by their self-renewal and the ability to differentiate into specialized cell types. During differentiation, a variety of progenitor cells that are in transition to specialized cell types are generated. How are specific cell types generated and organized into functional organs? We ask this question by studying the mechanisms of development and regeneration using cell culture and animal models (mice and zebrafish). More specifically, we aim to understand how various progenitor cells are generated, how they differentiate and how they undergo morphogenesis during embryonic development. We also aim to understand how dormant genetic systems are regulated for damaged organs to regenerate or for tissues to be maintained in adult animals.

Stem cells in the adult body are central to tissue renewal and regeneration. Humans have limited ability to regenerate tissues/organs after damage; however, certain animals, such as zebrafish, possess remarkable ability to regenerate various organs. We study the mechanisms that regulate regeneration of the fin and heart in zebrafish.

Congenital limb malformations are one of most common human disorders, and occur in one in 1,000 live births. Patterning and proliferation of progenitor cells of limb buds during embryonic development results in the development of each skeletal element with unique shape and size, located at a defined position. Abnormal limb development caused by genetic mutations or teratogenic effects leads to malformations with abnormal, loss of, or additional skeletal elements. Moreover, up to 18% of children with a congenital limb malformation die before 6 years of age due to associated malformations and/or dysfunctions of other organs. Therefore, understanding the mechanisms of limb development is relevant not only to basic science, but also to human health and medicine. We study the mechanisms bu which select transcription factors, signaling pathways and cellular metabolic activities regulate limb progenitors.

Another aspect of progenitor cell development/differentiation in the embryo is body elongation. At the end of gastrulation, which generates three germ layers (ectoderm, endoderm, mesoderm), vertebrate embryos develop only the head and anterior structures at the cervical level. Various types of progenitor cells, located at the caudal end of the body undergo proliferation, differentiation and migration to progressively add new body parts. We aim to understand how bi-potential neuromesodermal progenitors self-renew and generate mesodermal and neural progenitors in a balanced manner. We also study how nascent mesodermal progenitors further undergo differentiation and migration for proper body development.

Selected publications

Ru W, Koga T, Wang X, Guo Q, Gearhart MD, Zhao S, Murphy M, Kawakami H, Corcoran D, Zhang J, Zhu Z, Yao X, Kawakami Y, Xu C (2022) Structural studies of SALL family protein zinc finger cluster domains in complex with DNA reveal preferential binding to an AATA tetranucleotide motif. J. Biol. Chem. 2022 Oct17;298(12):102607

Koyano-Nakagawa N., Gong, W., Das, S., Theisen, J. W. M., Swanholm, T. B., Ly, D. V., Dsouza, N., Singh, B. N., Kawakami, H., Young, S., Chen, K. Q., Kawakami, Y., and Garry, D. J. (2022) Etv2 regulates chromatin status of the developmental enhancer to initiate Shh expression in the limb bud. Nature Communications. 13 (1), 4221

Chen, K. Q., Anderson, A., Kawakami, H., Kim, J., Barrett, J., and Kawakami Y. (2022) Normal embryonic development and neonatal digit regeneration in mice overexpressing a stem cell factor, Sall4. PLoS ONE 2022 Apr 28;17(4):e0267273

Tahara, N., Akiyama, R., Wang, J., Kawakami, H., Bessho, Y. and Kawakami, Y. (2021) The FGF-AKT pathway is necessary for cardiomyocyte survival for heart regeneration in zebrafish. Dev. Biol. 472:30-37

Chen, Q. K., Tahara, N., Anderson, A., Kawakami, H., Kawakami, S., Nishinakamura, R., Pandolfi, P. P., and Kawakami, Y. (2020) Development of the proximal-anterior skeletal elements in the mouse hindlimb is regulated by a transcriptional and signaling network controlled by Sall4. Genetics, 215(1):129-141

Tahara, N, Kawakami ,H, Chen, KQ, Anderson, A, Yamashita Peterson, M, Gong, W, Shah, P, Hayashi, S, Nishinakamura, R, Nakagawa, Y, Garry, DJ, and Kawakami Y (2019) Sall4 regulates neuromesodermal progenitors and their descendants during body elongation in mouse embryos. Development. 2019 Jul 15;146(14). pii: dev177659

Tahara, N, Akiyama, R, Theisen, JWM, Kawakami, H, Wong, J, Garry, DJ, and Kawakami, Y (2018) Gata6 restricts Isl1 to the posterior of nascent hindlimb buds through Isl1 cis-regulatory modules Developmental Biology. 2018 Feb 1;434(1):74-83.

Yu X, Kawakami H, Tahara N, Olmer M, Hayashi S, Akiyama R, Bagchi A, Lotz M, Kawakami Y (2017) Expression of Noggin and Gremlin1 and its implications in fine-tuning BMP activities in mouse cartilage tissues. Journal of Orthopaedic Research. 2017 Aug;35(8):1671-1682

Hayashi, S, Akiyama, R, Wong, J, Tahara, N, Kawakami, H, and Kawakami, Y (2016) Gata6-Dependent GLI3 Repressor Function is Essential in Anterior Limb Progenitor Cells for Proper Limb Development. PLOS Genetics. 2016 Jun 28;12(6):e1006138.

Akiyama, R, Kawakami, H, Wong, J, Oishi, I, Nishinakamura, R, and Kawakami, Y (2015) Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements. Proc Natl Acad Sci USA. 2015 Apr 21;112(16):5075-80.

Itou J, Akiyama R, Pehoski S, Yu X, Kawakami H, Kawakami Y. (2014) Regenerative responses after mild heart injuries for cardiomyocyte proliferation in zebrafish. Developmental Dynamics. 2014 Nov;243(11):1477-86.

Akiyama R, Kawakami H, Taketo MM, Evans SM, Wada N, Petryk A, Kawakami Y (2014) Distinct populations within Isl1 lineages contribute to appendicular and facial skeletogenesis through the β-catenin pathway. Developmental Biology. 2014 Mar 1;387(1):37-48.

Itou J, Oishi I, Kawakami H, Glass TJ, Richter J, Johnson A, Lund TC, Kawakami Y. (2012) Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development. 2012 Nov;139(22):4133-42.

Itou J, Kawakami H, Quach T, Osterwalder M, Evans SM, Zeller R, Kawakami Y (2012) Islet1 regulates establishment of the posterior hindlimb field upstream of the Hand2-Shh morphoregulatory gene network in mouse embryos. Development. 2012 May;139(9):1620-9.


Ph.D.: Okayama University, Japan, 1996